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Abstract
Marine natural products (MNPs) exhibit a wide range of 
pharmaceutically relevant bioactivities, including antibi-
otic, antiviral, anticancer, or anti-inflammatory proper-
ties. Besides marine macroorganisms such as sponges, 
algae, or corals, specifically marine bacteria and fungi 
have shown to produce novel secondary metabolites 
(SMs) with unique and diverse chemical structures that 
may hold the key for the development of novel drugs or 
drug leads. Apart from highlighting their potential bene-
fit to humankind, this review is focusing on the manifold 
functions of SMs in the marine ecosystem. For example, 
potent MNPs have the ability to exile predators and com-
peting organisms, act as attractants for mating purposes, 
or serve as dye for the expulsion or attraction of other 
organisms. A large compilation of literature on the role 
of MNPs in marine ecology is available, and several 
reviews evaluated the function of MNPs for the afore-
mentioned topics. Therefore, we focused the second part 
of this review on the importance of bioactive compounds 
from crustose coralline algae (CCA) and their role during 
coral settlement, a topic that has received less attention. 
It has been shown that certain SMs derived from CCA 
and their associated bacteria are able to induce attach-
ment and/or metamorphosis of many benthic invertebrate 
larvae, including globally threatened reef-building scler-
actinian corals. This review provides an overview on bio-
activities of MNPs from marine microbes and their 
potential use in medicine as well as on the latest findings 
of the chemical ecology and settlement process of scler-
actinian corals and other invertebrate larvae.
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8.1	 �Introduction: Definition of Secondary 
Metabolism

Over millions of years, evolution has created a multitude of 
diverse organisms and biocoenosis. Besides individual dif-
ferences within their appearance and way of life, the ability 
of absorbing, processing, and secreting substances from and 
into the environment can be found in all living organisms 
(Madigan et al. 2003). The biosynthesis and breakdown of 
these substances, including proteins, fats, or nucleic acids, is 
commonly known as primary metabolism with the com-
pounds involved known as “primary metabolites” (Dewick 
2002; Dias et al. 2012). The primary metabolism of plants, 
animals, humans, and prokaryotic microorganisms shows 
great similarity and displays the essential uniformity of all 
living matters; it thus serves as a driving force for the sur-
vival and reproduction of all life (Kreis 2007). In contrast, 
the mechanism by which an organism synthesizes “second-
ary metabolites” (SMs), frequently associated with the term 
“natural products” (NPs), is known as secondary metabolism 
(Dias et  al. 2012). SMs are defined as molecules with a 
molecular weight ranging between 100 and 1000  Da 
(Breinbauer et al. 2002) and, unlike primary metabolites, are 
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often found to be unique to an organism or a specific taxo-
nomic group. They do not directly contribute to the basal 
metabolism of its producing organism but rather act as cru-
cial factors to either attract, deter, or kill other organisms and 
thus increase their likelihood of survival (Kreysa and Grabley 
2007). For example, SMs have been found in both prokary-
otic and eukaryotic microorganisms, with unicellular bacte-
ria (e.g., Bacillus spp., Pseudomonas spp.), eukaryotic fungi 
(e.g., Penicillium spp., Aspergillus spp.), filamentous actino-
myces (e.g., Streptomyces spp.), and terrestrial plants being 
the most frequently studied and versatile producers (Bérdy 
2005). Many SMs are only produced under specific circum-
stances to serve different purposes: they can exile predators 
or competing organisms because of their toxic nature 
(Dewick 2002), act as attractants toward the same species for 
mating purposes (Gurnani et al. 2014), or serve as dyes for 
the expulsion and attraction of other creatures (Pichersky 
and Gang 2000). A possible explanation why organisms pro-
duce a high variety of bioactive SMs is that these molecules 
provide producers with a selective advantage against com-
peting organisms and, furthermore, act as an adaptation to 
environmental conditions (Jensen et al. 2005; O’Brien and 
Wright 2011; Letzel et  al. 2013; Macheleidt et  al. 2016). 
Moreover, several natural products (NPs) have the ability to 
protect against nonbiological impacts, such as high light 
intensities or elevated temperatures, and to obtain reproduc-
tion advantages for their producers (Ludwig-Müller and 
Gutzeit 2014). In the marine environment, SMs fulfill mani-
fold tasks for their producers as they, for instance, act as a 
chemical defense against predators (Rohde et  al. 2015; 
Helber et al. 2017; Rohde and Schupp 2018) or have antimi-
crobial effects against pathogenic microbes (Goecke et  al. 
2010; Rohde et al. 2015; Helber et al. 2018). Furthermore, 
MNPs are important for inducing larval settlement of benthic 
invertebrates (Yvin et al. 1985; Morse et al. 1988; Tebben 
et al. 2011, 2015; Harder et al. 2018), thereby maintaining 
and controlling community functioning and population 
dynamics. Besides their ecological impact, many NPs have 
been reported to exhibit a wide range of medically relevant 
bioactivities (Keller et al. 2005; Blunt et al. 2018), thus serv-
ing as promising molecules for the development of new 
drugs or drug leads (Heilmann 2007).

8.2	 �Marine Natural Products Chemistry: 
The Ocean as a Rich and Versatile 
Habitat

The ocean covers more than 70% of our planet’s surface and 
likely represents the origin of Earth’s life. In terms of species 
diversity, certain marine ecosystems, such as coral reefs, are 
thought to outnumber even tropical rain forests (Haefner 
2003). Until today, the number of marine species that inhabit 

the world’s oceans is not truly known; however, experts esti-
mated a number approaching 1–2 million species (Simmons 
et al. 2005; Das et al. 2006). In the past, marine sponges were 
an interesting source for novel NPs; these sessile organisms 
can produce bioactive substances for chemical defense 
against natural predators, such as fishes (Rohde et al. 2015), 
as well as prevent overgrowth by competing organisms 
(Proksch 1994; Ortlepp et  al. 2006). Furthermore, sponges 
serve as incubators for particular associated microorganisms 
like bacteria and fungi that also can contribute to the produc-
tion of bioactive compounds (Radjasa et al. 2011; Wiese et al. 
2011). Sponges being sessile, soft-bodied organisms, which 
mostly lack morphological defenses like biological armature 
or spines, depend to a large extend on bioactive metabolites 
for their survival and the survival of their associated micro-
bial symbionts (Proksch et al. 2006). Accordingly, marine NP 
research has its origin in the discovery of the two nucleosides 
spongothymidine and spongouridine by Bergmann and 
coworkers in the 1950s, who isolated both active compounds 
from the Caribbean sponge Cryptotethya crypta (Bergmann 
and Feeneyz 1951; Bergmann and Burke 1955). These two 
SMs served as lead structures for the development of the syn-
thetic antivirals cytarabine (Fig.  8.1a) and vidarabine 
(Fig. 8.1b) (Mayer et al. 2010) and, therefore, display exem-
plarily the tremendous potential of MNPs for the develop-
ment of new drugs (Gulder and Moore 2009). Although 
promising and still relevant, sponges and their associated 
microorganisms are not the only marine source producing 
bioactive compounds. Marine NP research has expanded its 
efforts in exploring worldwide oceans and their inhabitants 
from macro- to microorganisms as rich sources for novel 
SMs. Until today, this resulted in new MNPs being continu-
ously described (Table 8.1) (Martins et al. 2014). For instance, 
1163 novel compounds derived from marine organisms were 
described only in 2013 (Blunt et al. 2015).

Over the past decades, it has been obvious that unknown 
NPs are more likely found when high quality materials 
from novel sources are examined (Goodfellow and Fiedler 
2010). Unfortunately, the acquisition of marine organisms, 
compared to that of terrestrial organisms, is often more dif-
ficult and thus making the exploration and collection of 
marine samples (i.e., deep-sea organisms) very expensive 
(Molinski et  al. 2009). However, past progress in marine 
technologies, such as easy accessible scuba diving equip-
ment as well as remotely operated vehicles (ROVs), facili-
tated the investigations beyond the intertidal areas and led 
to the exploration of new marine organisms that can poten-
tially produce a huge range of novel chemical compounds 
with unique bioactivities (Gerwick and Moore 2012). Since 
many MNPs are released into the water, the concentration 
of bioactive compounds is rapidly diluted via diffusion pro-
cesses, and thus MNPs must be highly potent to have a 
long-reaching effect (Haefner 2003). Past studies have 
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shown that MNPs cover a wide variety of biological activi-
ties (Fig. 8.3), such as anticancer (Nastrucci et al. 2012), 
antibacterial (Hughes and Fenical 2010), antifungal, and 
antiviral effects (Mayer et al. 2013), making them a prom-
ising source for novel drugs. Figure 8.3 shows that different 
chemical classes of MNPs are showing equal proportions 
among a vast set of bioactivities, leading to the assumption 
that most chemical structures could either be developed or 
serve as scaffolds for the development of new drugs against 
various diseases (Hu et al. 2015).

Besides the investigation on marine invertebrates or 
algae, modern marine biotechnology expanded its interests 
onto the exploration of marine bacteria and fungi, since the 
latter have been recognized as renewable producers of SMs 
(i.e., under controlled laboratory conditions) in the drug 
discovery process (Waters et al. 2010). Both, bacteria and 
fungi associated with marine macroorganisms have shown 
to be potent producers of bioactive substances, in some 
cases with prominent activities against several pathogenic 
germs, viruses, and tumor cells (Imhoff et al. 2011 and ref-
erences therein).

8.2.1	 �Marine Bacteria: Widely Distributed 
Producers of Promising Natural 
Products

Marine microorganisms managed to conquer every marine 
habitat ranging from shallow and deep marine waters, polar 
regions, and deep-sea hydrothermal vents to diverse coral 
reef ecosystems. Particularly, the surface of macroorgan-
isms, such as algae, sponges, and corals, is a favorable eco-
logical niche for marine microorganisms. In many cases, 
bacteria live in close association with higher organisms and 
form symbiotic or mutualistic relationships (Lee et al. 2009; 
Kazamia et  al. 2012; Cooper and Smith 2015). There is 
growing evidence that the microbial community composi-
tion on marine macroorganisms is habitat and even species 
specific. Examples include differences in communities 
found on the surface of different algae (Lachnit et al. 2009), 
between different parts of the rhizoid and phylloid of the 
brown alga Saccharina latissima (Staufenberger et  al. 
2008), between different sponge species (Thomas et  al. 
2016; Moitinho-Silva et al. 2017), as well as between outer 

Table 8.1  Pipeline of marine pharmaceuticals until 2018 (according to http://marinepharmacology.midwestern.edu/clinical_pipeline.html, 
accessed 28 January 2018)

Compound Chemical class Source org. Therapeutic area Status 2018
Cytarabine Nucleoside Sponge Cancer FDA-approved
Vidarabine Nucleoside Sponge Antiviral FDA-approved
Ziconotide Peptide Cone snail Chronic pain FDA-approved
Trabectedin Alkaloid Tunicate Cancer FDA-approved
Brentuximab vedotin Antibody drug conjugate Mollusk Cancer FDA-approved
Eribulin mesylate Macrolide Sponge Cancer FDA-approved
Omega-3-acid ethyl ester Omega-3 fatty acid Fish Hypertriglyceridemia FDA-approved
Plinabulin Diketopiperazine Fungus Cancer Phase III
Plitidepsin Depsipeptide Tunicate Cancer Phase III
Bryostatin Macrolide lactone Bryozoan Alzheimer’s Phase II
Plocabulin Polyketide Sponge Cancer Phase II
Marizomib Beta-lactone-gamma-lactam Bacterium Cancer Phase I

Chemical structures of all compounds listed in this table can be found in Figs. 8.1 and 8.2

Fig. 8.1  (a) Cytarabine and 
(b) vidarabine (Mayer et al. 
2010) (created with 
ChemDraw, v. 16.0.1.4)
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Fig. 8.2  Selected marine pharmaceuticals. (a) Ziconotide, (b) trabect-
edin, (c) monomethyl auristatin E, (d) eribulin, (e) omega-3 fatty acid, 
(f) plinabulin, (g) plitidepsin, (h) bryostatin, (i) plocabulin, and (j) mar-

izomib (Mayer et al. 2010; modified from Lee et al. 2015; Pantazopoulou 
et al. 2018) (created with ChemDraw, v. 16.0.1.4)

L.-E. Petersen et al.



163

Fig. 8.2  (continued)
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and inner parts of the sponge Tethya aurantium (Thiel et al. 
2007). However, the great microbial diversity of marine 
environments remains nearly untapped. Simon and Daniel 
(2011) estimated that less than 0.1%, probably solely 0.01%, 
of all microbes in the oceans have been characterized. 
Molecular analysis of marine metagenomes revealed a great 
number of phylogenetic lines of so far uncultured groups of 
bacteria and archaea (DeLong et al. 2006; Simon and Daniel 
2009; Hug et  al. 2016). Besides their important roles in 
shaping community structures and in mediating microbe-
microbe as well as microbe-host interactions, marine bacte-
ria are suggested to represent a treasure box of new 
compounds for biotechnology. This assumption is due to 
their high biodiversity and the gap of knowledge regarding 
their potential of NP biosynthesis (Imhoff et al. 2011). Yet, 
much evidence is given that marine bacteria produce new 
compounds useful for the discovery of novel pharmaceuti-
cals (Rahman et  al. 2010; Waters et  al. 2010; Blunt et  al. 
2018). From 1997 to 2008, about 660 new marine bacterial 
NPs were identified. Most of them originated from the 
classes Actinobacteria (40%) and Cyanobacteria (33%), 
followed by Proteobacteria (12%) and members of the 
Bacteroidetes and Firmicutes (5%) (Williams 2009). In 
comparison, 179 novel NPs have been isolated from marine 
bacteria in 2016. This is only a moderate increase compared 
to the average number of new marine bacterial compounds 
in the last 3 years, but a significant increase from the aver-
age for the period of 2010 to 2012 (Blunt et  al. 2018). 
Members of the Actinobacteria are a rich source of NPs and 
hold an unmatched capacity for the generation of new drugs 
(Bull et al. 2005; Bull and Stach 2007; Fenical and Jensen 

2006). The first bioactive compound extracted from a marine 
actinomycete was the antibiotic SS-228Y, showing antibac-
terial activity to gram-positive bacteria. This biomolecule 
was proposed to be a peri-hydroxyquinone derivative pro-
duced by Streptomyces purpurogeneiscleroticus (Chainia 
purpurogena) collected from sea mud (Okazaki et al. 1975). 
Until today, the genus Streptomyces continues to be a pro-
lific source of new and interesting chemistry; numerous 
compounds showed exciting bioactivities. For example, S. 
spinoverrucosus, isolated from a sand sample from the 
Bahamian tidal flats, produced  the dibohemamines A–C, 
three new dimeric bohemamines. These compounds were 
shown to be formed via a nonenzymatic process with form-
aldehyde, which was also detectable in the growth media. 
Both metabolites dibohemamines B (Fig. 8.4a) and C exhib-
ited potent activity against lung cancer cells, with IC50 val-
ues of 140 nM and 145 nM, respectively (Fu et al. 2016). 
Another Streptomyces sp. isolated from a marine sediment 
sample collected off Oceanside, California, USA, produced 
the ansalactams A–D.  The novel ansalactam derivatives 
(B–D) represent three new carbon skeletons and, therefore, 
display the plasticity within the ansamycin biosynthetic 
pathway. The latter three novel metabolites showed moder-
ate antibacterial activity against MRSA (methicillin-resis-
tant Staphylococcus aureus) (Wilson et al. 2011; Le et al. 
2016). Apart from Streptomyces, species of the genera 
Salinispora and Marinispora were found to produce struc-
turally novel bioactive compounds. A Salinispora tropica 
strain was isolated from a sediment sample, collected from 
a mangrove environment in Chub Cay, Bahamas. This strain 
produced several β-lactone-gamma-lactams, the salinospo-

Fig. 8.3  Analysis of new marine-derived compounds from 1985 to 2012 according to chemical classes and biological activities (∗PHVD, preven-
tion of heart and vascular disease; ∗∗PN/NT, protection of neurons/neurotoxicity) (modified from Hu et al. 2015)
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ramides, which represent a new family of SMs (Feling et al. 
2003; Williams et al. 2005). Specifically, salinosporamide A 
(marizomib; see Fig. 8.2j) displayed potent in vitro cytotox-
icity against HCT-116 human colon carcinoma with an IC50 
value of only 11  ng  mL−1. Furthermore, this compound 
showed great potency against NCI-H226 non-small cell 
lung cancer, SK-MEL-28 melanoma, MDA-MB-435 breast 
cancer, and SF-539 CNS cancer, all with LC50 values less 
than 10 nm (Feling et al. 2003). As displayed in Table 8.1, 
marizomib has entered Phase I human clinical trials for the 

treatment of multiple myeloma (Martins et al. 2014; http://
marinepharmacology.midwestern.edu/clinical_pipeline.
html, accessed 28 January 2018). Asolkar et  al. (2009) 
found three new cyclohexadepsipeptides, namely, aren-
amides A–C, produced in the fermentation broth of a marine 
Salinispora arenicola, isolated from a sediment sample. 
Arenamide A and B (Fig. 8.4b) blocked TNF (tumor necro-
sis factor) induced activation in transfected 293/NFκB-Luc 
human embryonic kidney cells in a time- and dose-depen-
dent manner with IC50 values of 3.7 μM and 1.7 μM, respec-

Fig. 8.4  (a) Dibohemamine B (Fu et al. 2016), (b) arenamide B (Asolkar et al. 2009), (c) marinomycin A (Kwon et al. 2006), and (d) dolastatin 
10 (Bai et al. 1990) (created with ChemDraw, v. 16.0.1.4)
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tively. The compounds also inhibited nitric oxide (NO) and 
prostaglandin E2 (PGE2) production with lipopolysaccha-
ride (LPS)-induced RAW 264.7 macrophages. The authors 
suggest that the anti-inflammatory and chemoprevention 
characteristics of arenamides A and B are worth further 
investigation (Asolkar et al. 2009). Other examples for anti-
biotics with antitumor activity from marine Actinobacteria 
are the marinomycins. A Marinispora strain, isolated from 
an offshore sediment sample, produced the marinomycins 
A–D. The most promising compound within this novel class 
of polyketides is marinomycin A (Fig. 8.4c). It shows selec-
tivity against several human melanoma cell lines with an 
IC50 value of 5 nM for SK-MEL5 melanoma cells (Kwon 
et  al. 2006). Besides Actinobacteria, members of marine 
Cyanobacteria are known to produce bioactive SMs too. 
For example, the peptide dolastatin 10 (Fig. 8.4d) was origi-
nally isolated from the sea hare Dolabella auricularia (Bai 
et al. 1990) but was then shown to be produced by the cya-
nobacterium Symploca sp. (Luesch et al. 2001). This natural 
product (NP) was used as a model for the synthetic develop-
ment of soblidotin, which has entered Phase III clinical tri-
als (Mayer et al. 2010). The cyclic depsipeptide largazole is 
produced by another marine Symploca sp. and inhibited the 
growth of highly invasive transformed human mammary 
epithelial cells in a dose-dependent manner (GI50 7.7 nM). It 
induced cytotoxicity at higher concentrations (117  nM) 
(Taori et al. 2008). All these examples show the potential of 
marine bacteria, specifically Actinobacteria and 
Cyanobacteria, to produce chemicals that cover a broad 
range of bioactivities and might be used for the generation 
of novel drug candidates.

8.2.2	 �Marine Fungi: Bioprospecting 
the Future

Compared to bacteria, the basic knowledge on marine fungi, 
hereinafter referring to obligate and facultative marine fungi, 
is still deficient in matters of diversity and ecological impor-
tance (Imhoff et al. 2011). The term “marine fungi” applies 
rather to an ecological background than to a distinct taxon-
omy or a physiological approach (Kohlmeyer and Kohlmeyer 
1979). Within biology, marine fungi are mainly separated 
into two groups, namely, obligate marine fungi, which grow 
and sporulate exclusively in marine habitats, and facultative 
marine fungi, which originate from freshwater or terrestrial 
milieus and are capable to grow also in the marine environ-
ment (Kohlmeyer and Kohlmeyer 1979). By 1996, mycolo-
gists estimated the number of marine fungi to be 
approximately 1500 species, and by 2011, biodiversity esti-
mations of marine fungi were placed to be more than 10,000 
species (Jones 2011).

According to Overy et al. (2014), the examination of new 
substrata and geological locations will greatly increase the 
number of total species through the rapid discovery of new 
fungal species. However, marine fungal strains have been 
isolated from nearly every possible marine habitat until 
today, including soil and sediment (Wang et al. 2013; Simões 
et al. 2015), marine invertebrates (e.g., sponges and corals) 
(Wiese et al. 2011; Amend et al. 2012), marine plants (e.g., 
algae) (Loque et  al. 2010), and marine vertebrates (fishes) 
(Rateb and Ebel 2011). Algae have been used primarily as a 
source for bioprospecting fungal diversity, closely followed 
by sponges and mangrove habitats (Fig. 8.5). Efforts to iso-
late these symbionts within new and sometimes extreme 
habitats are still being made. A study on the fungal commu-
nity by a culture-dependent approach revealed that several 
Antarctic sponges of the phylum Ascomycota were a rich 
source of associated fungi and novel SMs, with some of 
them showing antimicrobial, antitumoral, and antioxidant 
potential (Henríquez et  al. 2014). Furthermore, due to the 
development of deep-sea instrumentation and new tech-
niques used for sampling, the deep-sea habitat emerged as a 
new and highly promising source for marine fungal biodiver-
sity, and thus an excessive number of novel fungal specimen 
have been retrieved (Wang et  al. 2015). For example, 
Burgaud et al. (2009) investigated the biodiversity of cultur-
able filamentous fungi and uncovered the presence of both 
Ascomycota and Basidiomycota associated with different 
deep-sea samples, including sediment, mussels, shrimps, and 
smoker rock scrapings. However, as an outcome of the recent 
bioprospecting efforts, biotechnological interests have 
mostly turned to marine microorganisms and notably fungi 
as a likely source for MNPs (Fig. 8.6) (Bhadury et al. 2006).

By 1992, only 15 marine fungal metabolites had been 
described (Fenical and Jensen 1993), and this number rose to 
270 until 2002 (Bugni and Ireland 2004). Within the period 
from 2006 until mid-2010, Rateb and Ebel (2011) summa-
rized 690 NPs from fungi isolated from marine habitats. With 
Penicillium spp. and Aspergillus spp. being the most potent 
producers, their study revealed that nearly 50% of the com-
pounds are polyketides and their prenylated forms, whereas 
alkaloids, terpenoids, and peptides contributed 15%–20% 
(Rateb and Ebel 2011). A famous example of a NP from a 
marine fungus is the diketopiperazine halimide (Fig. 8.6a), an 
aromatic alkaloid of a marine Aspergillus sp. isolated from the 
green alga Halimeda copiosa (Fenical 1999). Its synthetic 
analog, plinabulin (Fig. 8.2f), is showing antitumor activity by 
causing tubulin depolymerization, thereby leading to the dis-
ruption of tumor cells followed by necrosis of the tumor itself 
(Gullo et al. 2006). Up to today, plinabulin is the only marine 
fungal synthetic analog that has entered clinical trials and suc-
cessfully passed the first and second phase (Gomes et al. 2015; 
www.beyondspringpharma.com/en/pipeline/, accessed 28 
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January 2018). A further example was given by Pontius et al. 
(2008), who isolated chaetoxanthone B (Fig.  8.6b) from a 
marine Chaetomium sp., showing selective antimalarial activ-
ity against Plasmodium falciparum (IC50 = 0.5 μg mL−1) and 

moderate activity against Trypanosoma cruzi 
(IC50 = 1.5 μg mL−1) without or with only minimal cytotoxic-
ity toward cultured eukaryotic cells. Another promising marine 
NP is the chlorinated benzophenone pestalone (Fig.  8.6c), 

Algae 21%

Mangrove habitats
16%

Other plants (including 
wood) 6%

Sponges 19%

Molluscs 6%

Corals 3%

Ascidians 3%

Other marine invertebrates 4%

Fishes 3%

Sediments (including 
deep sea) 16%

Water 1%
Artificial substrates 1%

Undisclosed 1%

Fig. 8.5  Sources of marine fungi-producing MNPs until 2010 (reproduced from Rateb and Ebel 2011)

Fig. 8.6  (a) Halimide 
(Fenical 1999), (b) 
chaetoxanthone B (Gademann 
and Kobylinska 2009), and (c) 
pestalone (Cueto et al. 2001) 
(created with ChemDraw, v. 
16.0.1.4)
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which has been isolated from the fungus Pestalotia sp., which 
is associated with the brown alga Rosenvingea sp. and was 
collected near the Bahamas Islands. Although pestalone was 
only produced when Pestalotia sp. was cocultured with a 
marine bacterium, this compound showed potent activities 
against methicillin-resistant Staphylococcus aureus and van-
comycin-resistant Enterococcus faecium strains, indicated by 
minimum inhibitory concentrations (MIC) of 37 ng mL−1 and 
78  ng  mL−1, respectively (Cueto et  al. 2001). These latter 
examples encourage the ongoing research activities on novel 
marine fungal species for the future development of new 
drugs. Considering that 38% of the approximately 22,000 bio-
active microbial metabolites are of fungal origin, and that only 
about 5% of the world’s fungal taxa have been described, 
fungi exhibit a tremendous potential for the discovery of novel 
bioactive SMs (Schulz et al. 2008). To avoid the rediscovery of 
already known compounds, specialized and effective derepli-
cation strategies need to be constantly employed (Martins 
et al. 2014). For this purpose, the most common techniques are 
a combination of chemical compound separation hyphenated 
to various spectroscopic or mass-selective detection methods 
such as high-performance liquid chromatography (HPLC) 
coupled to either a diode array detector (HPLC-DAD) or a 
mass spectrometer (HPLC-MS) (Wolfender et  al. 2010). 
Besides nuclear magnetic resonance (NMR) spectroscopy, 
HPLC-MS is another predominant analytical technique for the 
fast detection and identification of SMs and other small mol-
ecules. A major advantage of MS over NMR is that MS-based 
methods are far more sensitive, making it the method of choice 
when it comes to first-pass compound detection and identifica-
tion in high-throughput screening applications (Carrano and 
Marinelli 2015). Moreover, it provides accurate mass even 
within the nanogram range, which can be used as a search 
criterion or query in nearly all NP databases (Nielsen et  al. 
2011). On the contrary, NMR is by far the most efficient 
method to unambiguously elucidate complex structures of 
small molecules (Hubert et al. 2017). One of its advantages 
compared to MS strategies is that it serves as a quantitative 
analysis without the need of a suitable reference material 
(Kurita and Linington 2015). The 1H-NMR is also useful for 
evaluating the purity of a given sample. For example, impuri-
ties such as lipids are somewhat invisible in HPLC-DAD-MS 
techniques due to their low UV absorption, hydrophobicity, 
and contumaciousness to ionization, but they can easily be 
seen in 1H-NMR (Carrano and Marinelli 2015). After the col-
lection of UV/VIS absorption spectra, molecular mass, and 
further structure data, the gained information needs to be com-
pared with database entries. Over the decades, many different 
databases covering a wide range of compounds have been 
established (Mohamed et al. 2016; Guijas et al. 2018), includ-
ing general compound libraries like SciFinder (www. sci-
finder.cas.org, accessed 28 January 2018), NP libraries such as 

AntiBase (www.wiley-vch.de/stmdata/antibase.php, accessed 
28 January 2018) or Dictionary of Natural Products (dnp.
chemnetbase.com, accessed 28 January 2018), and even some 
free-to-use databases like ChemSpider (www.chemspider.
com, accessed 28 January 2018), PubChem (pubchem.ncbi.
nlm.nih.gov, accessed 28 January 2018), or Metlin (metlin.
scripps.edu, accessed 28 January 2018). In addition to this 
widespread dereplication approach, fragmentation-based MS 
methods, also referred to as MS/MS or tandem mass spec-
trometry, in combination with molecular networking are 
receiving increasing attention for the identification of unknown 
compounds. For example, the Global Natural Products Social 
(GNPS) molecular networking website (http://gnps.ucsd.edu) 
is an open-access knowledge base that aims to let NP chemists 
work together and share their raw, processed, or identified 
MS/MS spectrometry data. We believe that crowdsourced 
curation of freely available reference MS libraries as well as a 
fast-growing database of MS/MS spectra will rapidly acceler-
ate the annotation and thus the search of prior unknown com-
pounds (Wang et al. 2016; Kind et al. 2017; Quinn et al. 2017).

8.3	 �Marine Chemical Ecology: Predator-
Prey Interactions and Competition

During the last decades, marine chemical ecology has evolved 
from a young science with mostly NP chemists finding new 
SMs with potentially obscure ecological functions into a 
matured research field that simultaneously combines chemical 
and biological aspects. Besides their side effect of exhibiting 
utilizable bioactivities for humankind, chemical cues possess 
major influences on every organizational level in the marine 
system. Several reviews highlight the importance of chemical 
communication between benthic and pelagic organisms for a 
better understanding of marine ecosystem functioning (i.e., 
Hay 1996, 2009; Sieg et  al. 2011; Paul et  al. 2011; Puglisi 
et al. 2014). However, most marine organisms are rather orga-
nized in highly biodiverse and productive communities occur-
ring in ocean fringes, such as coral reefs or offshore zones, 
than being distributed all over the ocean (Simmons et al. 2005; 
Das et al. 2006). Many of these biological communities are 
characterized by the presence of extremely harsh conditions in 
matters of UV radiation (light stress at water surface), tem-
perature, pressure, and salinity. In addition to these environ-
mental stressors, sessile benthic organisms are often in strong 
competition for available resources such as space (to settle and 
grow) and nutrients. As a result, survival and reproduction 
between the competing organisms can strongly depend on 
their ability to produce bioactive SMs (de Carvalho and 
Fernandes 2010). These bioactive substances can perform 
various tasks for their producers and associated organisms; for 
instance, SMs work as a chemical defense against predators 
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(Pohnert 2004; Kubicek et al. 2011; Rasher et al. 2013; Rohde 
et al. 2015; Helber et al. 2017), function as attractants toward 
consumers (Sakata 1989), have antimicrobial effects against 
pathogenic microbes (Goecke et al. 2010; Puglisi et al. 2014; 
Helber et al. 2018), guide the opposing sex by letting individu-
als find and evaluate potential mating partners through chemi-
cal cues (Lonsdale et  al. 1998; Li et  al. 2002), or act as 
settlement cues for invertebrate larvae to initiate the 
transformation into a sessile, juvenile form (Morse et al. 1988; 
Heyward and Negri 1999; Negri et al. 2001; Kitamura et al. 
2009; Tebben et al. 2011, 2015; Sneed et al. 2014). For exam-
ple, different classes of macroalgae defend themselves chemi-
cally against herbivores and produce SMs with antimicrobial 
and antifouling activity (Schupp and Paul 1994; Paul et  al. 
2014; Schwartz et al. 2016). Specifically, brown algae of the 
family Dictyotaceae produce several classes of diterpenes that 
defend their producers against herbivores but have also shown 
activity against other competitors. It has been reported that 
natural concentrations of a diterpene of the dolastane class 
(Fig.  8.7a), originally isolated from the brown alga 
Canistrocarpus cervicornis, reduce feeding activity by the sea 
urchin Lytechinus variegatus (Bianco et al. 2010). In a study 
of Craft et al. (2013), lipophilic extracts of nine subtropical 
algae were offered to four subtropical and three cold-temper-
ate sea urchins at two concentrations. While the extracts of the 
subtropical marine algae Caulerpa sertularioides, Dictyota 
pulchella, and D. ciliolate deterred all urchins, the other mac-
roalgae extracts from the cold-adapted areas led to different 
feeding resistance patterns. Apart from anti-herbivore activity, 
many macroalgae are known for their antimicrobial and anti-
fouling activity (Goecke et al. 2010, 2012; Pérez et al. 2016; 
Schwartz et al. 2017). A review by Harder et al. (2012) high-
lights the crucial role of halogenated furanones (Fig. 8.7b, c) 
within the red alga Delisea pulchra and how these compounds 
interact with the associated bacteria. The halogenated fura-
nones deter fouling by bacterial pathogens and epiphytic bac-
teria through interference with bacterial quorum sensing. By 
imitating quorum sensing-mediating acyl homoserine lactones 
to block the same receptor sites, halogenated furanones can 
manipulate bacterial colonization and biofilm formation as 
well as bleaching and diseases caused by pathogenic bacteria. 
Besides macroalgae, sponges and their associated microbes 
are another prolific source of potentially novel NPs with prom-
ising bioactivities. Although the ecological role of sponge 
crude extracts has been evaluated for numerous sponge spe-
cies, assignment of activities to specific NPs is lacking behind. 
Investigated bioactivities included antipredatory, antifouling, 
antimicrobial, and allelopathic functions (Rohde et al. 2015; 
Helber et al. 2017, 2018). Several studies are providing evi-
dence that sponges are chemically defended from predation 
and pathogens by compounds that either the host or other 
associated microorganisms had produced (Pawlik 2011; 

Hentschel et  al. 2012). The Mediterranean sponge Axinella 
verrucosa, collected from the Gulf of Naples, Italy, produces 
hymenidin (Fig. 8.7d) and debromo-carteramine A (Fig. 8.7e), 
two bromopyrroles that are also known from other sponges. 
The n-butanol part of the A. verrucosa extract, containing the 
two bromopyrroles as well as the pure hymenidin, showed 
activity against microbial fouling and deterred feeding by the 
generalist shrimp Palaemon elegans at naturally occurring 
concentrations (Haber et al. 2011).

Several studies have shown that sponges of the same 
genus and even of the same species can produce different 
SMs. This circumstance raises the question to what extend 
SMs have evolutionary advantages for the survival of 
sponges. A study of Noyer et al. (2011) showed that several 
populations of Spongia lamella, collected in the 
Mediterranean Sea, spanning a region of 1200 km, had an 
extremely high intraspecific chemical diversity. While nit-
enin (Fig. 8.7f) and ergosteryl myristate (Fig. 8.7g) were the 
major metabolites, the number of compounds as well as their 
concentrations changed among populations collected from 
different geographic locations. The authors suggested that 
these variations may have been due to both genetic and envi-
ronmental factors. A further study on S. lamella revealed that 
the populations from the five regions (Portugal, Gibraltar, 
Baleares, Catalonia, and South France) significantly differed 
within their genetic and chemical diversity as well as their 
associated bacteria (Noyer and Becerro 2012). Similarly, 
Rohde et  al. (2012) found different metabolites and com-
pound concentrations in the tropical sponge Stylissa massa 
across different ocean basins and within sites. Compound 
concentration varied among individuals, and no correlation 
between compound concentrations and factors such as depth, 
UV, predation, and microbial growth could be identified. The 
authors concluded that concentrations could be affected by 
other selective pressures such as water temperature, water 
quality, light conditions, and food availability or that the 
observed variations reflected population-specific constitutive 
defenses. Another activity that has received increased atten-
tion recently are allelopathic actions of sponges by which 
they can outcompete scleractinian corals. Sponges have 
become an increasingly dominant species in the Caribbean 
reefs (Maliao et al. 2008; Colvard and Edmunds 2011; Perry 
et al. 2013; Villamizar et al. 2013; Loh and Pawlik 2014) and 
to a lesser extend in the Indo-Pacific (Bell and Smith 2004; 
Bell et al. 2013; Helber et al. 2017) as coral reef systems are 
permanently threatened by multiple decades of loss of reef-
building corals due to climate change, disease, and pollution. 
In contrast to the calcium carbonate skeleton of corals, 
sponge skeletons are made of silica or protein, making them 
less sensitive to ocean acidification and temperature shifts 
(Pawlik 2011; Bell et al. 2013). Apart from being environ-
mentally more robust, sponges can also outcompete corals 
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Fig. 8.7  (a) A diterpene (Bianco et al. 2010), (b, c) two halogenated furanones (Harder et al. 2012), (d) hymenidin, (e) debromo-carteramine A 
(Haber et al. 2011), (f) nintenin, and (g) ergosteryl myristate (Noyer et al. 2011) (created with ChemDraw, v. 16.0.1.4)
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by chemically affecting the coral symbionts through alle-
lopathy. Crude extracts of several sponges collected from the 
Caribbean reefs were embedded in stable gels at natural con-
centrations and caused a decrease in the photosynthetic 
potential of the symbiotic zooxanthellae from the brain coral 
Diploria labyrinthiformis. Interestingly, sponge extracts 
influenced the symbiotic zooxanthellae in two ways: impair-
ing photosynthesis with bleaching and with only little or no 
bleaching at all (Pawlik and Steindler 2007). Similarly, 
organic extracts of three sponges collected from Zanzibar 
reduced the photosynthetic performance of symbionts in the 
scleractinian coral Porites sp. (Helber et al. 2018). In addi-
tion to allelopathy on adults, it has been reported that sponge-
derived SMs can negatively affect invertebrate larvae 
settlement too (Thompson 1985; Thompson et  al. 1985; 
Bingham and Young 1991; Hellio et al. 2005). Since there 
have been several reviews in recent years on the role of SMs 
in chemical ecology and specifically chemical defense (Paul 
et  al. 2011; Pawlik 2011; Rohde and Schupp 2018), we 
decided to focus in the remaining part of this review on the 
role of SMs during the settlement process of invertebrates (a 
role which has to this point received less attention).

8.3.1	 �Marine Invertebrate Larvae Settlement: 
Role of Secondary Metabolites

Many benthic marine invertebrates such as corals, sponges, 
mussels, or worms have a planktonic phase followed by a 
metamorphic event that transforms them into a less mobile or 
immobile, sessile benthic form. Since the process of attach-
ment and metamorphosis for most organisms is generally 
irreversible (Thorson 1950), the choice of a suitable location 
for settlement is crucial for invertebrate larvae regarding sur-
vival, population dynamics, and community functioning. In 
the past, two models have been developed to explain the 
settlement of marine invertebrate larvae: (1) the stochastic 
model postulated that the settlement process happens ran-
domly as soon as suitable substrate becomes available and 
that postmetamorphic events arrange the final distribution of 
juveniles, and (2) the deterministic model suggested that 
specific environmental factors determine the attachment and 
metamorphosis of larvae as well as their final distribution. 
Nowadays, there is great evidence that the settlement process 
of invertebrate larvae is mainly biologically and chemically 
driven, although environmental parameters may also influ-
ence settlement behavior (Sebens 1983; Morse et al. 1988; 
Mundy and Babcock 1998; Lau and Qian 2001; Lau et al. 
2005; Tebben et al. 2015; Da-Anoy et al. 2017). Chemical 
settlement cues are produced by a variety of marine organ-
isms. Some invertebrate larvae like to settle among individu-
als of their own species, while others preferably settle upon 
other species, resulting in gregarious or associative settle-

ment, respectively. Gregarious settlement has been reported 
for many phyla including polychaete worms and barnacles 
(Hadfield and Paul 2001). Live adults of the polychaete 
Hydroides dianthus were capable of eliciting gregarious set-
tlement responses in conspecific larvae. Interestingly, settle-
ment in response to live adults with or without their tubes as 
well as to their amputated tentacular crowns was signifi-
cantly greater compared to dead worms, empty tubes, or bio-
film covered slides. Moreover, after extraction of aggregations 
of adult worms with organic solvents, the inductive capacity 
of the remaining tissue was lost, and the activity went into 
both the nonpolar and polar fractions of the crude extract 
(Toonen and Pawlik 1996). Gregarious settlement of inverte-
brate larvae has long been assumed to be induced by contact 
with adult conspecifics (Crisp and Meadows 1962, 1963; 
Clare and Matsumura 2000). It has been shown that a glyco-
protein with high molecular weight isolated from the adult 
barnacle Amphibalanus amphitrite, termed the settlement-
inducing protein complex (SIPC), induced settlement of 
cypris larvae (Matsumura et al. 1998; Dreanno et al. 2006). 
Nevertheless, there are reports showing that waterborne cues 
are able to induce gregarious settlement as well. Endo et al. 
(2009) isolated a previously undescribed ~32-kDa water-
soluble protein from extracts of A. amphitrite adults that is 
distinct from SIPC and induced settlement of cyprids. This 
protein quickly induced searching behavior of conspecific 
larvae and was therefore proposed to act as a waterborne 
settlement pheromone. Elbourne and Clare (2010) provided 
evidence that settlement of A. amphitrite larvae can be 
induced by an unknown waterborne cue produced by con-
specific adults both in the field and in the laboratory. These 
authors suggest that the ecological role of water-soluble set-
tlement cues might be to facilitate the transition of inverte-
brate larvae out of the plankton by stimulating searching 
behavior, rather than attachment and metamorphosis caused 
by surface-bound settlement cues. Besides gregarious settle-
ment, associative settlement is another form and can be 
divided into several subcategories, including herbivorous/
predatory relationships, parasitic relationships, and nonpara-
sitic or symbiotic relationships. There are already some fully 
and partially characterized chemical compounds described; 
however, their ecological relevance often remains obscure 
(Pawlik 1992; Hadfield and Paul 2001). The quinol jacara-
none (Fig. 8.8a), isolated from the red alga Delesseria san-
guinea, induces larval settlement in Pecten maximus (Yvin 
et  al. 1985), although this scallop has previously not been 
described to settle on this kind of red alga with any specific-
ity (Chevolot et al. 1991; Nicolas et al. 1998). Another exam-
ple is given by Williamson et al. (2000), who at first isolated 
a water-soluble complex of the sugar floridoside and isethi-
onic acid in a 1:1 ratio from Delesseria pulchra. This 
floridoside-isethionic acid complex induced metamorphosis 
and reversible settlement in the sea urchin Holopneustes pur-
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purascens. In a following study, Swanson et al. (2004) were 
unable to reproduce these results. Instead, they found that 
histamine (Fig. 8.8b), isolated from the polar extract of D. 
pulchra, induced rapid settlement in 80–100% of the larvae 

of H. purpurascens. As larval settlement can be distinguished 
between searching, attachment, and metamorphosis (see 
Fig. 8.9; exemplarily shown for coral larvae), it is question-
able if a single cue can induce the settlement chain or if sev-

Fig. 8.8  (a) Jacaranone (Yvin et al. 1985), (b) histamine (Williamson et al. 2000), (c) tetrabromopyrrole (Tebben et al. 2011), (d) 11-deoxyfistularin-3 
(Kitamura et al. 2007), and (e) luminaolide (Maru et al. 2013) (created with ChemDraw, v. 16.0.1.4)

Fig. 8.9  Settlement and early life stages of scleractinian corals. This figure highlights on the first steps of a coral larvae (searching, attachment, 
and metamorphosis) toward an adult coral

L.-E. Petersen et al.
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eral different cues are sequentially involved. Several studies 
on the settlement of different marine invertebrate larvae have 
indeed proven that single molecules can induce the whole 
chain of settlement, although only a few catalysts have been 
fully chemically characterized (Yvin et  al. 1985; Pawlik 
1986; Pawlik et al. 1991; Tsukamoto et al. 1999; Swanson 
et  al. 2004; Dreanno et  al. 2006). Only three of the latter 
studies have supported the ecological role of their investi-
gated signaling molecules by also applying ecologically 
realistic concentrations (Pawlik 1986; Swanson et al. 2004; 
Dreanno et  al. 2006). Meanwhile, tetrabromopyrrole 
(Fig. 8.8c), a tetrabrominated pyrrole, has been isolated from 
a marine Pseudoalteromonas sp. associated to the crustose 
coralline algae (CCA) Neogoniolithon fosliei, showing set-
tlement activity in larvae of the branching stony coral 
Acropora millepora. Interestingly, coral larvae directly 
underwent metamorphosis by developing into primary pol-
yps within a few hours, but only a small amount of them 
conducted attachment to the substratum, a process nor-
mally administered before metamorphosis is initiated 
(Tebben et  al. 2011). Somewhat the same applies to 
11-deoxyfistularin-3 (Fig.  8.8d), a bromotyrosine deriva-
tive that has been isolated from an unnamed CCA overgrow-
ing coral rubble collected in Okinawa, Japan. This secondary 
metabolite induced solely metamorphosis in larvae of the 
scleractinian coral Pseudosiderastrea tayamai. 
Metamorphosis activity was further enhanced by the addi-
tion of fucoxanthinol and fucoxanthin, which are two carot-
enoids that had been isolated from the same CCA as well 
(Kitamura et al. 2007). Given the high number of studies on 
marine invertebrate settlement, it is very likely that addi-
tional examples of larvae relying on waterborne or surface-
bound cues for gregarious and associative settlement will be 
described in the future. Furthermore, we are convinced that 
future studies will not only focus on the discovery of novel 
chemical settlement cues but also provide more information 
on their role in the mechanism of the settlement cascade and 
on their broader ecological functions.

8.3.2	 �Coral Larvae Settlement: Search 
for Novel Settlement Cues

Coral reefs are among the world’s most diverse ecosystems 
and serve as nursery grounds and feeding areas for many 
reef-dependent animal species. Due to their relative complex 
physical structure, coral reefs shape the otherwise flat sea 
floor into a three-dimensional structure that provides a com-
bination of food and shelter for a high biomass of commer-
cially important fish species and other associated fauna 
(Moberg and Folke 1999). Besides their manifold ecosystem 
services, coral reefs affect humankind by having a major 

impact on economy and politics. Coral reefs provide food via 
commercial fisheries (Pauly et al. 2002), protect coastlines 
from destruction by waves (Barbier et al. 2011), and generate 
income from food and tourism (Bellwood et  al. 2004). 
Unfortunately, corals reefs are also highly threatened ecosys-
tems with some local and global factors being responsible. 
Local factors include declining water quality, destructive 
fishing, and increased pollution from urban areas. Global 
factors are global warming and ocean acidification, due to a 
dramatic rise of carbon dioxide levels in the atmosphere over 
the past century (Hoegh-Guldberg et al. 2007). Stony “reef-
building” corals (Scleractinia) live in symbiosis with micro-
algae named zooxanthellae, which provide their coral hosts 
with up to 90% of their energy through photosynthesis 
(Stanley 2006). This relationship can be disrupted by envi-
ronmental stressors such as long-lasting temperature 
increases together with intense periods of high sun irradi-
ance. As a response to the latter stressor, corals expel their 
algae and thus lose their photosynthetic pigments at the same 
time, leading to the phenomenon of skeletal-looking bright 
white corals, a process better known as “coral bleaching” 
(Ainsworth et al. 2016; Heron et al. 2016). Such bleaching 
events have been increasing in the last two decades, thereby 
affecting reefs on a global scale. The severity of events 
caused coral mortalities of over 60% in some locations 
(Eakin et al. 2010; Hughes et al. 2017). Predicted impacts of 
persistent bleaching events include a reduction of reef biodi-
versity and coral cover, up to the total extinction of local 
coral species (Brainard et  al. 2011, 2013). Furthermore, 
ocean acidification decelerates the calcification of corals by 
reducing the concentration of carbonate (CO3

2−), and thus 
making it even less available for marine calcifiers (Hoegh-
Guldberg et  al. 2007). To counteract the fast and massive 
coral decline, a better understanding of the recovery and 
population dynamics of stony corals needs to be developed. 
because threatened coral reef systems depend on the recruit-
ment of new individuals (Mumby and Steneck 2008). The 
recruitment process can be divided into (1) the development 
of competent larvae in the water column (spawners) or within 
the corals itself (brooders), (2) the settlement (searching, 
attachment, and larval metamorphosis) onto suitable sub-
strata (Fig.  8.9), and (3) the survival of juvenile corals 
(Ritson-Williams et al. 2009). Since the survival rate of juve-
nile corals is likely influenced by the type of substratum cho-
sen for settlement (Harrington et al. 2004; Ritson-Williams 
et al. 2010), finding a suitable settlement ground may be a 
critical step within the recruitment process.

Although chemical cues are believed to serve as the pri-
mary determinants of coral settlement, to some extent, physi-
cal properties have shown to influence coral larvae settlement 
as well. In a field study, larvae of five different species of scler-
actinian corals, including Goniastrea favulus, G. aspera, 
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Acropora tenuis, Oxypora lacera, and Montipora peltiformis, 
have shown to favor locations with lower light intensity 
(Mundy and Babcock 1998). Also, a study by Mason et  al. 
(2011) demonstrated that both larvae of Porites astreoides and 
Acropora palmata consistently settled on different red or red-
orange plastic materials while, at the same time, disdaining 
other colors such as green, blue, or white. It was suggested that 
this consistent response to red or reddish surfaces is related to 
long-wavelength photosensitivity and thus might be a poten-
tial strategy to artificially promote coral larvae settlement. 
Over the past decades, many studies have shown that coral 
larvae settle in response to either live CCA or organic extracts 
of CCA. For instance, larvae of the agariciid corals Agaricia 
tenuifolia, A. humilis, and A. agaricites have reported to settle 
to different degrees of stringency and specificity on Caribbean 
CCA, specifically Hydrolithon boergesenii. The responsible 
morphogenic inducer was fractionated by ultrafiltration and 
shown to be a water-insoluble, ether-insoluble, and acetone-
insoluble unstable biochemical, which is apparently associ-
ated with the cell walls of the inducing CCA (Morse et  al. 
1988). Further studies by Morse and Morse (1991) have shown 
that the inductive molecule is a sulfated glycosaminoglycan. A 
field study of Price (2010) showed that larvae of several scler-
actinian corals, including Pocillopora spp., Acropora spp., and 
Porites spp., do indeed prefer specific CCA species for in situ 
settlement, as they recruited more frequently on Titanoderma 
prototypum than on other CCA. A similar settlement specific-
ity has been demonstrated for larvae of the scleractinian corals 
A. palmata and Montastraea faveolata. The latter two species 
have been tested for their rates of settlement on ten different 
species of red algae, including eight different CCA species, 
resulting in strong settlement preferences of larvae from both 
corals to different CCA. A. palmata settled on surfaces of H. 
boergesenii, Lithoporella atlantica, Neogoniolithon affine, 
and Titanoderma prototypum, but showed no settlement on N. 
mamillare. Larvae of M. faveolata settled on surfaces of 
Amphiroa tribulus, H. boergesenii, N. affine, N. munitum, and 
T. prototypum, but no settlement occurred on N. mamillare, 
Porolithon pachydermum, and a noncoralline Peyssonnelia sp. 
The authors of this study suggested that patterns of coral dis-

tribution might be dependent on the red algae distribution 
(Ritson-Williams et  al. 2014). However, in many cases of 
coral larvae settlement, the chemical identity of the pre-
sumed settlement-inducing molecule is just poorly described 
or remains largely unknown. In the past, the identity of these 
CCA-associated chemical cues was presumed to be cell 
wall-bound and thought to be some kind of high molecular 
mass polysaccharides (Morse and Morse 1991; Morse et al. 
1994, 1996). Other studies chemically fully described the 
chemical signaling molecules; however, the detected cue 
often did not initiate the entire settlement cascade (e.g., 
11-deoxyfistularin-3, Fig.  8.8d) (Kitamura et  al. 2007) or 
just function as a settlement enhancer, such as luminaolide 
(Fig.  8.8e). The macrodiolide luminaolide was originally 
isolated from the CCA H. reinboldii and greatly enhanced 
the metamorphosis activity in Leptastrea purpurea when 
combined with another fraction that eluted at 80% aqueous 
methanol by octadecyl silica gel column chromatography 
(Kitamura et al. 2009; Maru et al. 2013). Interestingly, chem-
ical inducers for larval settlement were also discovered in 
coral rubble and the skeleton of the massive coral Goniastrea 
sp. (Heyward and Negri 1999), indicating that coral larvae 
settlement can be either induced by a variety of chemical 
cues or by specific cues from multiple sources. In the past, 
bacterial biofilms have received notable attention as suitable 
settlement ground for many marine invertebrate larvae 
(Johnson et  al. 1991; Pawlik 1992; Huang and Hadfield 
2003; Huggett et al. 2006; Hadfield 2011). It was shown that 
coral reef biofilms, which were more than 2 weeks old, are 
able to induce settlement in the scleractinian A. microph-
thalma. FISH (fluorescence in situ hybridization) analysis 
revealed that the overall community composition of these 
biofilms was dominated by classes of Alphaproteobacteria, 
Betaproteobacteria, Gammaproteobacteria, and Cytophagia-
Flavobacteria of Bacteroidetes (Webster et al. 2004). Apart 
from bacterial multispecies biofilms, a specific strain belong-
ing to the genus Pseudoalteromonas (Pseudoalteromonas 
A3) isolated from the CCA H. onkodes was able to induce 
full settlement, including attachment and metamorphosis, 
in the reef-building corals A. willisae and A. millepora  

Fig. 8.10  Chemical structures of (a) (2S)-1-O-(7Z,10Z,13Z-
hexadecatrienoyl)-3-O-β-D-galactopyranosyl-sn-glycerol and (b) (2R)-1 

-O-(palmitoyl)-3-O-α-D-(6′-sulfoquinovosyl)-sn-glycerol (Tebben et  al. 
2015) (created with ChemDraw, v. 16.0.1.4)
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(Negri et  al. 2001). Another metamorphosis-inducing cue, 
named tetrabromopyrrole, was also isolated from a 
Pseudoalteromonas sp. (Tebben et al. 2011). This compound 
might have widespread importance among Caribbean corals 
as it induced settlement in the brooder Porites astreoides as 
well as in the spawning species Orbicella franksi and A. pal-
mata (Sneed et  al. 2014). Further studies on the ecological 
relevance of Pseudoalteromonads and tetrabromopyrrole in 
the coral settlement process revealed that the respective bacte-
ria and its compound did not elicit the same rates of coral lar-
vae settlement as CCA and instead introduced morphogenic 
processes that are often fatal to the larvae. Instead it was found 
that CCA-derived molecules, belonging to the chemical 
classes of glycoglycerolipids (Fig. 8.10a, b) and high molecu-
lar weight polysaccharides, are the major contributors of the 
mixed fractions and caused larval settlement at equivalent 
concentrations present in live CCA (Tebben et al. 2015).

8.4	 �Conclusions

Secondary metabolites are investigated for their outstanding 
pharmaceutical applications as well as for their ecological 
relevance. Many MNPs have been found to elicit a broad 
range of bioactivities and, therefore, continue to be a prolific 
source for the generation of new drugs or drug leads. We 
believe that the exploration of new and extreme habitats will 
advance the discovery of novel macro- and microorganisms 
and, thus, might lead to the detection and isolation of novel 
NPs. Specifically, marine fungi still represent an underesti-
mated but rich source for new SMs, although their distribu-
tion and ecological role often remains scarce. The 
hyphenation of state-of-the-art techniques such as chromato-
graphic separation, mass spectrometry, and nuclear magnetic 
resonance spectroscopy is a suitable way to facilitate NP 
screening effort. Particularly, the use of multiple secondary 
metabolite databases as well as MS/MS approaches in com-
bination with molecular networking makes the search for 
novel NPs more efficient and, at the same time, lowers the 
risk of rediscovery. In terms of chemical ecology, SMs fulfill 
manifold roles for their producers. Besides predator-prey 
and algae-herbivore interactions, marine chemical ecology 
has also shifted its focus on marine invertebrate settlement 
behavior. Specifically, the role of SMs as signaling mole-
cules for coral larvae settlement has gained interest during 
the last decades. CCA and their associated microorganisms 
are the best-known sources for coral larvae settlement cues, 
but until today, only few settlement compounds have been 
chemically fully described. Furthermore, the knowledge of 
the interplay between coral larva, settlement cue, settlement 
cue-producing organism (may it be the CCA or its associated 

microbes), and other environmental factors such as light 
intensity is still limited and needs to be improved for a deeper 
comprehension of coral reef functioning. We are only at the 
beginning of understanding the role of SMs in the marine 
environment and many fascinating discoveries are yet to 
come.
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�Appendix

This article is related to the YOUMARES 9 conference ses-
sion no. 9: “Biodiversity of Benthic Holobionts: Chemical 
Ecology and Natural Products Chemistry in the Spotlight.” 
The original Call for Abstracts and the abstracts of the pre-
sentations within this session can be found in the Appendix 
“Conference Sessions and Abstracts”, Chapter “7 
Biodiversity of Benthic Holobionts: Chemical Ecology and 
Natural Products Chemistry in the Spotlight”, of this book.
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