

Zentrum für Material- und Küstenforschung

Dissolved and atmospheric methane concentrations along a freshwater - seawater transect

from the River Elbe into the North Sea

Bussmann, I., Brix, H., Kamjunke N., Ködel, U., Koschorreck, M., Schütze, C.

Modular Observation Solutions for Earth Systems

Inland Elbe cruise, 4. – 12. Aug 2020 Tide Elbe cruise, 25. -26. Aug 2020 Part of Sternfahrt 5, 31.8 – 3.9 2020

11 11

Material & Methods

- Continuous, underway measurements of
 - hydrographic parameters (Ferry Box)
 - Dissolved CH₄ & CO₂ (Degasser + Greenhouse Gas Analyzer, LosGatos), Calibration with water samples analyzed with head space and GC)
 - Atmospheric CH₄ & CO₂ (Licor)
 - Discrete water samples for prim. production, chlorophyll, (see presentation vEGU-8721)

- Focus on the Elbe river
 - Influence of tributaries?
 - Several hotspots, where and why?
 - extension and influence of hotspots?
- Lagrangian sampling
 - Does the dissolved CH₄ influence the atmospheric CH₄?
 - Does the ratio of CH₄/CO₂ give more insights?

Overall Distribution of CH₄

Overall Distribution of CH₄

Dissolved CH₄ (log scale, nmol/L)

- Locally very steep increase of diss. & atmos. CH₄
- Hydrographic parameters (temp, cond, ph, O₂, chl-a, turb) do not explain the CH₄ increase
- Probably due to a lateral input of CH₄-rich water from near by natural reserve area

Comparing diss. and atmos. CH₄

- distinct pattern of atmosph. + diss. CH₄
- **Increase near Dessau** for both
- Slight increase of atmosph. CH_4 near the

HELMHOLTZ

ASSOCIATION

Diurnal pattern for atmos. CH₄

- Higher values in the morning, decreasing towards afternoon

Ratio of diss CH₄ / diss CO₂

- Low ratios until km 400
- Clear peak near Dessau
- At km 500 ratio is influenced by CO₂ decrease by increased primary production (previous presentation)
- Increase of ratio towards weir due to increase in CH₄

- High diss. CH₄ correlates with
 - ↑diss. CO₂, ↑conductivity, ↑turbidity, ↓Chlorophyll, ↑ atmos. CH₄, ↑ atmos. CO₂
- Decrease in flow velocity
 - => sedimentation of phytoplankton
 - See also previous presentation, EGU21-8721
 - => increase of atmos. + diss CH₄
 - => reduced gas transfer coefficient, may be ebullition

Influence of tributaries

- We identified several hot spots for diss. CH₄, which often are mirrored by atmospheric CH₄ hotspots
- Reason for hotspots:
 - Influence of primary production, flow velocities and not yet specified ones
- Spatial patterns of atmos. CH₄ are overlain by diurnal patterns
- Tributaries have only minor influence on diss. CH₄, within 100 m, increased concentrations return to background values