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Abstract: Recent studies on seafloor mapping have presented different modelling methods for the 18 

automatic classification of seafloor sediments. However, most of these studies have applied these 19 

models to seafloor data with appropriate number of ground-truth samples and without considera- 20 

tion of the imbalances in the ground-truth datasets. In this study, we aim to address these issues by 21 

conducting class-specific predictions using ensemble modelling to map seafloor sediment distribu- 22 

tions with minimal ground-truth data and combined with hydroacoustic datasets. The resulting 23 

class-specific maps were then assembled into a sediment classification map, where the most proba- 24 

ble class was assigned to the appropriate location. Our approach was able to predict sediment clas- 25 

ses without bias to the class with more ground-truth data and produced reliable seafloor sediment 26 

distributions maps that can be used for seafloor monitoring. Sediment shifts of a heterogenous sea- 27 

floor in the Sylt Outer Reef, German North Sea were also assessed to understand the sediment dy- 28 

namics in the area during two different short timescales: 2016-2018 (17 months) and 2018-2019 (4 29 

months). The analyses of sediment shifts showed that the western area of the Sylt Outer Reef expe- 30 

rienced sediment fluctuations, but the morphology of the bedform features is relatively stable. The 31 

methods presented can be used for seafloor monitoring and other underwater exploration studies 32 

with minimal ground-truth data. The results provided information on the seafloor dynamics, which 33 

can assist in the management of the marine conservation area. 34 

Keywords: ensemble modelling; seafloor mapping; sediment change analysis; seafloor classifica- 35 

tion; acoustic mapping; small sample size; ensemble map 36 

 37 

1. Introduction 38 

The need for accurate seafloor sediment maps is especially important to monitor ar- 39 

eas with heterogenous and dynamic seafloor, where changes in sediment distribution can 40 

alter the behavior and distribution of benthic species[1–9]. 41 

Advances in automated seafloor classification have been made in recent years. Sea- 42 

floor habitat mappers have utilized machine learning classification methods to improve 43 

the identification of seafloor characteristics using hydroacoustic data, oceanographic var- 44 

iables, and ground-truth samples [10–15]. Some of the most common modelling 45 
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techniques are classification tree analysis (CTA), generalized boosted models (GBM), ar- 46 

tificial neural networks (ANN), and most prominently, random forest (RF) [11,16–20]. 47 

Comparisons of different classification modelling techniques have been conducted, but 48 

there is no consensus in the literature on which model performs best [16,19,21,22]. Some 49 

studies attempted to address this issue by combining multiple modelling algorithms (en- 50 

semble modelling) to derive accurate spatial predictions of seafloor sediment [21]. The 51 

general idea behind ensemble modelling is to simulate more than one set of initial condi- 52 

tions using different modelling techniques, and to derive a general prediction from all (or 53 

a part) of them. [23–25]. Ensemble modelling avoids the selection of one single ‘best’ 54 

model, and thus, eliminates or reduces model selection bias [25]. In fact, the ensemble 55 

modelling approach has already been applied in the marine environment to map seabed 56 

sediments [21,22], submarine geomorphology [26], and benthic habitats [27–29]. How- 57 

ever, for automated seafloor sediment classification, it has been found that ensemble mod- 58 

elling does not yield significantly different results as compared to using a single model 59 

[21,22]. Although, in these studies, ensemble modelling was not applied in a class-specific 60 

approach (i.e., different sediment classes were modelled at the same time). 61 

In addition to ensemble modelling, ensemble mapping has been suggested as another 62 

sediment mapping approach to alleviate the limitations of predicting sediment classes 63 

[30]. In ensemble mapping, predictions for each sediment class were generated using sin- 64 

gle or multiple classification techniques, and then combined the results into a single map 65 

by aggregating the modal classes. This method has been utilized to develop seafloor sed- 66 

iment distribution maps as an alternative to the typical thematic mapping (i.e., predicting 67 

multiple classes at the same time) [11,30]. However, in these studies each sediment class 68 

was predicted using only a single model and not by ensemble modelling.  69 

Most of the seafloor mapping studies that used classification models applied the al- 70 

gorithms to data with appropriate number of ground-truth samples[11,15,17,30,31], which 71 

raises the question of their applicability to studies with a smaller amount of data ( e.g., 72 

<50 of the total ground-truth dataset). Especially for wide-scale hydroacoustic seafloor 73 

mapping, time and budget for comprehensive ground-truth sampling is scarce[32]. More- 74 

over, class imbalances in the ground-truth datasets are seldomly addressed during sedi- 75 

ment classification modelling. A dataset is imbalanced if it contains a small amount of 76 

samples in one class as compared with the rest of the classes[33,34]. This can affect the 77 

performance accuracy of the classification methods—a direct consequence is that the mi- 78 

nority classes cannot be well modeled and the final performance decays[35]. 79 

 In this study, we propose an approach for addressing the limitation of imbalanced 80 

and minimal amount of available ground-truth datasets for automated seafloor sediment 81 

classification using hydroacoustic data, by conducting class-specific ensemble modelling 82 

and ensemble mapping. Our main objective is to generate seafloor sediment distribution 83 

maps of selected sites in the Sylt Outer Reef (German North Sea), and to examine spatio- 84 

temporal lateral shifts in sediment distribution. The selected sites are embedded within a 85 

large continuous hydroacoustic dataset, but only a limited amount of ground-truth data 86 

exist locally. We assessed the applicability of our approach to different spatial scales, 87 

study areas, and datasets. For this purpose, we (1) identify the important variables to pre- 88 

dict different sediment classes, (2) predict each sediment class using ensemble modelling, 89 

(3) collate all class-specific predictions into one map through ensemble mapping, and (4) 90 

locate and evaluate the changes based on the predicted seafloor sediment distribution 91 

maps.  92 

 93 

2. Materials and Methods 94 

2.1. Study Site 95 

We selected two relatively well-investigated areas within the Special Area of Conser- 96 

vation Sylt Outer Reef (SOR) (German North Sea). These areas, referred here as H3 and 97 
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H5, are subsets representing the typical seafloor structure of the western Sylt Outer Reef 98 

and will be used to test the performance of our modelling approach (Figure 1). The areas 99 

have been the subject of the national seafloor mapping program SedAWZ, which is coor- 100 

dinated by the Federal Maritime Hydrographic Agency (BSH) [36,37]. Mapping of the 101 

SOR was given importance because of the complexity of the seafloor habitats (i.e., boulder 102 

reefs, gravel patches, sands) in the area, which standouts in the relatively sand-dominated 103 

German North Sea. Semi- and fully-automated procedures for the detection of stones have 104 

been tested in area H3 [38] and sediment dynamics have been studied in both areas [39,40].  105 

The German Bight is a relatively shallow water body with maximum depth of about 106 

60 meters and represents the south-eastern part of the North Sea. Typical depth-averaged 107 

currents in the shallow part of the German Bight (depth<20m) are directed along the coast, 108 

in a counter-clockwise direction, driven by tidal residual circulation enhanced by westerly 109 

and southwesterly winds (e.g., [41,42]).  110 

Tidal dynamics, wave actions, wind-driven currents, and mixing determine the sea- 111 

bed sediment dynamics. The geomorphology and surface sediments of the Sylt Outer Reef 112 

is shaped by several glacial advances and retreats during the Pleistocene. Surface sedi- 113 

ments consist of heterogeneously distributed coarse-grained lag deposits, which are 114 

mostly composed of siliciclastic material (reworked moraine deposits). The matrix grain- 115 

size vary from coarse sand to gravel, which can also be mixed with pebble- to boulder- 116 

sized particles. The coarse sediments are partly covered by Holocene marine fine- to me- 117 

dium-grained sands [43]. Parametric sediment echosounder data revealed that the lag de- 118 

posits are submerged along the western boundary of the Sylt Outer Reef and form the 119 

eastern shore of the Paleo Elbe Valley [44]. The surficial finer sediments are deposited by 120 

series of sedimentary infilling, which were driven by wind, waves, tides, and storm events 121 

during the Holocene Transgression [44]. 122 

Study area H3 is approximately 4.7 km2 characterized by one large elongated sorted 123 

bedform feature oriented towards northwest-southeast direction. The bedform is visible 124 

in the side-scan mosaics as a high backscatter area (dark pixels; grey values = 55-255) and 125 

surrounded by low backscatter areas (light pixels; grey values = 0-54) (Figure 1, lower left 126 

box). Water depth ranges from 28 to 36 m.  127 

H5 is a small area with a size of 1.8 km2 with two parallel bedform features with a 128 

north-south orientation (Figure1, upper left box). Side-scan backscatter intensity is high 129 

(grey values = 55-255) in the southwest, but gradually decreases towards the northeast 130 

(grey values = 0-54). The depth in H5 is slightly deeper than H3, with water depths rang- 131 

ing between 36 and 42 m. High backscatter areas were observed in deeper areas, while 132 

low backscatter regions dominate at shallow water depths [40].  133 

 134 
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Figure 1. The study sites are in the western side of the Sylt Outer Reef, a Special Area of Con- 136 
servation. The maps (left) show the two focus areas and the location of the sampling stations 137 
between 2016 and 2018. 138 

2.2. Data Acquision and Processing 139 

All data presented in this study were obtained during surveys performed between 140 

2016 and 2018 in the two focus areas (Table 1). Focus area H3 was surveyed in October 141 

2016 and March 2018 (17 months apart), while H5 was surveyed in November 2017 and 142 

March 2018 (4 months apart). Surveys were conducted with the German research vessel 143 

“Heincke” (Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 144 

Germany). 145 

Seafloor backscatter data was collected with an Edgetech 4200 MP side-scan sonar 146 

(SSS) (EdgeTech, West Wareham, MA, USA) at a frequency of 300 kHz and with a range 147 

of 75 m (H3) and 150 m (H5). The SSS was towed at a speed of 5 kn behind the vessel and 148 

was kept at 5-10m above the seafloor. Surveys were designed to achieve a 10% overlap 149 

and 0.25 m along-track resolution of the SSS mosaics. Multibeam echosounder (MBES) 150 

data were simultaneously collected with a hull-mounted Kongsberg EM710 system 151 

(Kongsberg Maritime AS, Kongsberg, Norway). The MBES has two positioning units. The 152 

primary positioning system is from Trimble SP461 DGPS (0.5-3m accuracy), while the sec- 153 

ondary unit is DEBEG/Leica GPS (5-15 m accuracy). The very shallow mode with fre- 154 

quency range of 65-106 kHz and pulse length of 0.2 msec, which is ideal for <100 m depth 155 

range [45], was used in our surveys. The default maximum reliable swath width was 90°. 156 

Side-scan data were processed using QPS Fledermaus Geocoder Toolbox v.7.8.8 software 157 

(Quality Positioning Services BV, Zeist, The Netherlands) to reduce the artefacts in the 158 

raw data and to produced SSS mosaics that are compatible for change analyses (see [40] 159 

for details on the procedure). The process applied backscatter, beam pattern, and angle- 160 

varying gain corrections; and improved the spatial accuracy of the SSS mosaics (spatial 161 

accuracy: ±0.25 m). The SSS mosaics were gridded to 0.25 m resolution with decibel(dB) 162 

values cropped to ±3σ dB range and logarithmically mapped to 8-bit scale. Post-pro- 163 

cessing of MBES data was conducted in QPS Qimera v2.0.1 software (Quality Positioning 164 

Services BV, Zeist, The Netherlands) to correct the raw MBES data from tidal effects and 165 

reject invalid soundings. The survey track distances, designed for SSS-survey, were too 166 

wide to achieve a swath overlap of the MBES data. Hence, the gaps in bathymetric data 167 

(~30-100 m apart) were interpolated to generate a digital elevation model (DEM) using the 168 
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Topo-to-Raster function of ArcGIS v.10.7.1(Environmental Systems Research Institute- 169 

ESRI, Redlands, CA), which is an interpolation method specifically designed for the crea- 170 

tion of hydrologically correct DEM.   171 

Ground-truth information was collected from both underwater video and sediment 172 

grain-size sampling (Table 1). Underwater videos were obtained using a Kongsberg OE14- 173 

366 Color Zoom Camera (Kongsberg Maritime AS, Kongsberg, Norway; horizontal Reso- 174 

lution 460/470 TV lines) and a GOPRO 3+ Black Edition (GoPro, Inc., San Mateo, Califor- 175 

nia; resolution: 1920 x 1440, 47.95 frames per second). The cameras were mounted on a 176 

robust metal frame with a laser scale (spacing: 10 cm). The GPS system of the research 177 

vessel was connected to the on-board control unit of the camera for geographic referenc- 178 

ing. The cameras were deployed underwater as close as possible to the seafloor surface 179 

for at least five minutes and towed while the ship was drifting at a speed of less than 1 kn. 180 

Videos were initially screened for image quality to omit blurred footage. The remaining 181 

videos were then converted into individual images at two-second intervals using the 182 

scene video filter of VLC media player (VideoLan project, version 3.2.1.0). Subsequently, 183 

photos with a clear image of the seafloor were selected manually and the coordinates were 184 

recorded. 185 

Sediment samples were collected with a Van Veen grab sampler (HELCOM stand- 186 

ard). Sites for sampling were selected based on their backscatter characteristics in the SSS 187 

mosaic of the study area, which was processed on-board upon acquisition. In the home 188 

laboratory, carbonate and organic matter were removed from the sediment using chemi- 189 

cal treatment according to the procedures described in [46] and analyzed using a CILASS 190 

1180L laser particle sizer (LPS, range: 0.04-2,500 µm). Particles larger than 2,000 µm were 191 

removed by sieving before measurement. Grainsize statistics were calculated in GRADI- 192 

STAT v8.0© [47].  193 

All samples including the grain size data were categorized according to Folk and 194 

Ward [48] and BSH[36] sediment classification as: sand, coarse sediment (gravely sand, 195 

sandy gravel, gravel), and lag sediment (sediments of different grainsize with gravel and 196 

stones). The Level A category of the BSH sediment classification scheme, which encom- 197 

pass different sediment types, was used to classify our ground-truth samples (Table 2). 198 

The backscatter properties of the sand class in the SSS mosaics of H3 and H5 are different. 199 

Sand was reflected as medium-high backscatter in H5 instead of low backscatter like in 200 

H3 (Figure 2-4). Hence, we differentiate the two sand classes based on their backscatter 201 

properties: sand low-backscatter (SLBS) and sand high-backscatter (SHBS). 202 

In total, 106 ground-truth samples (both sediment and video stills) were obtained at 203 

H3, while 76 samples were collected at H5 (Table 3). However, it must be noted that only 204 

a subset of the total ground-truth samples from each study area was used in each model 205 

runs (Table 3).  206 

Table 1. Date of offshore surveys conducted with German research vessel “Heincke” and the data 207 
collected. 208 

Survey Code Date  Survey Area Data Collected 

HE 474 12-20 Oct 2016 H3 Backscatter, Bathymetry, Sediment 

and Video samples 

HE 501 15-28 Nov 2017 H5 Backscatter, Bathymetry, Sediment 

and Video samples 

HE 505 13-20 Mar 2018 H3 and H5 Backscatter, Bathymetry, Sediment 

and Video samples 

 209 

 210 

 211 

 212 
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Table 2. BSH sediment classification scheme for seafloor mapping in German marine waters [36]. 213 
Level A category was used to classify our ground-truth samples. 214 

   215 

*Not specified = Lack of information and/or knowledge for the exact classification  216 
**Not classified = cannot be classified further in this level 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

Level A Level B Level C 

  
Fine Sediment (FSed) 

not specified* not classified** 
Mud (M) 

not classified sandy Mud (sM) 
muddy Sand (mS) 

  
  
Sand (S) 

  
  
Sand (S) 

 
fine Sand (fSa) 
medium Sand (mSa) 
mixed Sand (mxSa) 
coarse Sand (cSa) 

  
  
Coarse Sediment 

(CSed) 

  
not specified 

  
not classified 

gravelly Sand (gS) 
   sand Gravel (sG) 

Gravel (G) 

Mixed Sediments 

(MXSed) 

not specified not classified 
gravelly Mud (gM) 

  
gravelly muddy Sand (gmS) 

muddy sandy Gravel (msG) 

muddy Gravel (mG) 
Lag Sediment (LagSed) not classified not classified 

not specified not specified not specified 
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Table 3. Summary of the ground-truth datasets that were used for the class-specific ensemble models. All ground- 230 
truth data were georeferenced to the spatial resolution of the DGPS (±0.25m) of the research vessel. 231 

*The two sand classes were classified based on their backscatter properties— sand low-backscatter (SLBS) and sand 232 
high-backscatter (SHBS) (see section 3.1). 233 

 234 

2.3. Modelling Approach 235 

The idea of our approach is to predict each sediment class separately using ensemble 236 

modelling, and then combine the resulting class-specific predictions into a sediment dis- 237 

tribution map. In this regard, different models were built for each sediment class per study 238 

area. Additionally, we developed models for each year of the datasets to evaluate the 239 

changes in sediment distribution. We modelled eight different datasets in total. 240 

 241 

2.3.1. Ensemble Modelling 242 

 Ensemble models predict distributions of the response variable (i.e., sediment type) 243 

by combining different modelling techniques to derive a general prediction.  244 

Here, we utilized the ‘BIOMOD2’ package within the statistics software R (CRAN) 245 

v.4.0.3 [24,49] to perform ensemble modelling. BIOMOD2 is the updated object-oriented 246 

version of the BIOMOD package and has been developed for ecologists to predict species 247 

distribution, but it can also be used to model any binomial data (i.e., binary presence- 248 

absence object) in function of any explanatory variables [24]. BIOMOD2 has been used to 249 

predict macroalgal habitats [50], to map the distribution of medicinal plant species [51], 250 

and for ecological niche modelling of basking sharks [52], but it has not been applied to 251 

predict seafloor sediments.  252 

Four machine-learning approaches that are commonly used in seafloor mapping 253 

were selected from the BIOMOD2 package: classification tree analysis (CTA), artificial 254 

neural networks (ANN), random forest (RF), and generalized boosted models (GBM). In 255 

CTA, a decision tree is grown by repeatedly splitting the data, then the complex tree is 256 

pruned back to the desired size using specific rules to reduce overfitting [53]. In ANN, 257 

models were run several times and the mean prediction was used or the best fitting model 258 

was selected [23]. It uses sets of adaptive weights to link the response to the predictors 259 

[25]. RF grows each tree with a randomized subset of predictors and several trees are 260 

grown as the predictors are aggregated by averaging [53]. Lastly, GBM uses a forward 261 

stage-wise procedure that iteratively fits simple trees to the training data, while gradually 262 

increasing focus on poorly modelled observations [25] 263 

 264 

Study Area  
Sediment 

Class* 

Field 

Survey 
Data type Georeference quality 

Number of 

samples 

H3 

     

Lag Sedi-

ment 

 (LagSed) 

2016 grab sample, videos, photographs DGPS 14 

2018 grab sample, videos, photographs DGPS 58 

Sand Low  

Backscatter 

(SLBS) 

2016 grab sample, videos, photographs DGPS 13 

2018 grab sample, videos, photographs DGPS 21 

H5 

Coarse Sedi-

ment (Csed) 

2017 grab sample, videos, photographs DGPS 13 

2018 grab sample, videos, photographs DGPS 18 

Sand High  

Backscatter 

(SHBS) 

2017 grab sample, videos, photographs DGPS 19 

2018 grab sample, videos, photographs DGPS 26 

Total 

presence data 
  2016-2018 point data DGPS 182 



Water 2021, 13, x FOR PEER REVIEW 8 of 27 
 

 

2.4. Input Data for the Models 265 

2.4.1. Sediment Data 266 

The sediment and video sample data were converted into points and binary format 267 

for the model. For example, locations where sand was observed were assigned 1, while 268 

areas where there is no sand i.e., the location was categorized as pseudo-absence or as 269 

another sediment class based on the sediment samples, were assigned 0. Pseudo-absences 270 

are artificial absence data, which represent places where the response variable is supposed 271 

(but not confirmed) to be absent [54,55]. Pseudo-absences data was built for each sediment 272 

class because most of the models require both presence and absence data. To generate 273 

pseudo-absences, we conducted three iterations using random strategy with a selection of 274 

200-500 pseudo-absences to prevent sampling bias[25].  275 

 276 

2.4.2. Predictor Variables 277 

Geophysical and textural features were extracted from processed MBES and SSS 278 

data, and from oceanographic models that were developed for the German Bight. These 279 

features were then used to predict the probability of occurrence of each sediment class. A 280 

total of 348 predictor variables were generated for this study. 281 

Bathymetry, slope, northing, and easting were derived from our MBES data using 282 

the Benthic Terrain Modeler v3.0 Toolbox of ArcGIS 10.7.1 [56]. Spatial data on near-bot- 283 

tom (averaged over 1 m layer above the seabed) tidal residual currents and tide-induced 284 

maximum friction velocities were derived from the barotropic multi-layer setup for the 285 

south-eastern North Sea. FESOM-C coastal ocean model was used as a numerical tool. It 286 

was validated through a series of experiments with a particular focus on the North Sea 287 

area and its tidal dynamics in particular [57–59].  288 

Textural features of the SSS mosaics were extracted using the grey-level co-occur- 289 

rence matrix package in R (GLCM v.1.6.5.) to identify the spatial characteristics of the mo- 290 

saics. GLCM evaluates the co-occurrence of pixel grey level values at given offsets to en- 291 

hance image classification [60,61]. We applied grey levels of 32, window size of 9, and 292 

inter-pixel distance of 5 and 10, which are the recommended settings for GLCM analysis 293 

using SSS data [19] . Feature calculation was conducted on different orientations: 0º, 45º, 294 

90º, 135º, and the mean of all directions. A total of 80 statistical features were extracted for 295 

each side-scan mosaic. The list of the calculated GLCM statistics and geophysical features 296 

used in this study can be found in Supplementary Table 1. 297 

 298 

2.4.3. Feature Selection  299 

The combination of few presence data and many predictor variables can easily cause 300 

model overfitting [62]. In addition, correlation between two or more predictor variables 301 

in a statistical model can induce multi-collinearity[63]. Therefore, since we are working 302 

with a small number of occurrences, the selection of predictor variables is an important 303 

step in our approach. A general rule of thumb is the 1:10 ratio of presence data and pre- 304 

dictors, which means to include only two predictors for twenty presence data points 305 

[62,64].  306 

Predictor variables were selected in an iterative process. Initially, the variance infla- 307 

tion factor (VIF) was used to detect collinearity between the predictors and to remove 308 

redundant variables. The VIF is based on the square of the multiple correlation coefficient 309 

(R2) resulting from regressing the predictor variable against all other predictor variables 310 

[63]. A VIF greater than 10 indicates a collinearity problem[65]. Here, VIF analysis was 311 

performed using the ‘vifstep’ function in the R package ‘usdm’ [66]. All predictor varia- 312 

bles were analysed in a stepwise procedure, whereas variables with VIF of >5 were re- 313 

moved. Further feature selection was conducted during model calibration based on the 314 

variable importance score of the predictors. In the BIOMOD2 package, the variable im- 315 

portance function uses a machine-learning approach to randomize one of the variables in 316 
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each permutation and calculate a correlation score between the standard prediction and 317 

the new prediction. The higher the value the more important the predictor variable has 318 

on the model.  319 

Variable importance score was calculated through 10 permutations and predictor 320 

variables with a low mean variable importance value (≤0.1) were excluded from the mod- 321 

elling. The variable importance score of the predictors that were used in our models are 322 

presented in Supplementary Table 2. 323 

We have set a maximum of five predictors to model each sediment class to avoid 324 

model overfitting and multicollinearity.  325 

 326 

2.5. Model Calibration and Validation 327 

The parameters and complexity of each model were modified depending on the sed- 328 

iment class, number of predictor variables, and presence data.  329 

Initially, single models (i.e., RF, CTA, ANN, and GBM models) were calibrated using 330 

70% of the presence data and validated with the remaining 30%. The cross-validation pro- 331 

cedure was repeated 20 times for each model. During calibration, the settings and com- 332 

plexity of the single models were repeatedly modified until the optimal TSS value (≥0.7) 333 

was achieved. Model performance was assessed by the threshold-independent receiver 334 

operator characteristics (ROC), threshold-dependent true skill statistics (TSS), and Co- 335 

hen’s Kappa [67].TSS ranges from -1 to +1 where +1 indicates perfect agreement and val- 336 

ues of zero or less indicate a performance no better than random. This is different from 337 

Kappa because TSS is not affected by the size of validation set and prevalence. TSS score 338 

of 0.7 or higher indicates good or exceptionally good performance of the model [68]. ROC 339 

assess the relationship between the false positive fraction (specificity) and the sensitivity 340 

for a range of thresholds. Kappa indicates the best possible agreement [68]. 341 

Subsequently, only single models with TSS value of ≥0.7 were included in the ensem- 342 

ble model of each sediment class. TSS is used to select the ‘‘best’’ model, i.e., the model 343 

providing greater accuracy on the test data for sediment class. Ensemble models were 344 

calculated based on the committee average, mean, and coefficient of variation of the model 345 

predictions (Table 4). Here, we used the committee-averaged ensemble models to build 346 

the sediment distribution maps because it gives both the prediction and measure of un- 347 

certainty. In committee averaging, each model decides for the sediment class being either 348 

present or absent, and then the sum was divided by the number of models. For example, 349 

when the prediction is around 0.5 it means that half of the models predict 1 and the other 350 

half predict 0 [24,25].  Moreover, to remove the bias across the selected models, BIOMOD 351 

applied the same weight to all predictions to derive a consensus prediction. The weights 352 

are calculated based on models’ predictive accuracy on test data [24].  353 

As a result of multiple model parameters, a total of 240 models were built for each 354 

sediment class (4 algorithms x 20 cross-validation runs x 3 pseudo-absences sampling). A 355 

total of 960 single models and eight (8) ensemble models were generated for the two study 356 

areas (Table 4). The R script used to perform ensemble modelling can be found in Supple- 357 

mentary Material 1. 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 
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Table 4. Summary of the total numbers of models that were built for each study area 369 

and sediment class, and the number of models that were kept in the final ensemble model.  370 

Study Area and 

year 
Sediment Class* 

Total no. of mod-

els built 

Total no. of models 

kept in the ensemble 

model 

H3 

2016 LagSed 240 92 

2016 SLBS 240 168 

2018 LagSed 240 113 

2018 SLBS 240 143 

H5 

2017 CSed 240 99 

2017 SHBS 240 20 

2018 CSed 240 56 

2018 SHBS 240 39 

* LagSed: Lag sediment, CSed: Coarse sediment, SLBS: sand low-backscatter, SHBS: sand high- 371 
backscatter.  372 

 373 

2.6. Ensemble Mapping and Map Accuracy Assessment 374 

 375 

The committee-averaged ensemble predictions for each sediment class were aggre- 376 

gated to create an ensemble map. The procedure was conducted using the raster analysis 377 

tools of ESRI ArcGIS 10.7.1 and is explained in Appendix A. In summary, we used the 378 

maximum cell values of each sediment class as the parameter to combine them into one 379 

map. The output is an ensemble map of the predictions where the most probable class was 380 

assigned to the location.  381 

Accuracy of the ensemble maps was calculated using the ‘confusionMatrix’ function 382 

of the ‘caret’ package in R [69]. A separate testing dataset, 30% of the presence data of each 383 

sediment class per year, was used to extract the predicted values in the ensemble maps in 384 

the location of the testing data, then a confusion table was constructed to calculate statis- 385 

tics such as overall accuracy. The overall accuracy indicates the percentage of areas that 386 

were correctly predicted. Kappa coefficient, a commonly-used accuracy index in seafloor 387 

mapping, was also calculated but was not used to evaluate the accuracy of the ensemble 388 

maps, because recent findings suggest that it is an inappropriate index to describe the 389 

classification accuracy of thematic maps obtained by image classification[70] . 390 

 391 

2.7. Detecting Changes in Seafloor Sediment Maps 392 

To determine if there are changes in the seafloor sediment maps of different years, 393 

we applied the change detection method for habitat classification maps of  Rattray et 394 

al.[71]. The method uses a transition matrix which is a conventional method of assessment 395 

of land cover changes [72,73]. In this method, the two sediment classification maps from 396 

different years were cross tabulated to derive the statistics that describe temporal changes 397 

(i.e., net change, persistence, etc.). In recent years, it has been adapted to detect changes 398 

in benthic habitat maps and seafloor sediments [19,71,74].  399 

The ‘from-to’ transition of the sediment classes, persistence, and the amount of 400 

gain/loss were calculated for H3 and H5. Gain refers to the increase in area coverage of a 401 

given class, while loss refers to the decrease. Persistence indicates no change in the sedi- 402 

ment class [71,72].   403 

3. Results 404 

3.1. Sediment Classes Based on Field Survey 405 

According to grab samples and underwater videos, lag sediments (LagSed) and 406 

sand-1 (SLBS) were the sediment classes in H3 (Figure 2 and 3). Lag sediments were 407 



Water 2021, 13, x FOR PEER REVIEW 11 of 27 
 

 

observed in high-backscatter areas (dark pixels) and as clusters and patches of gravel, 408 

cobbles, and boulders with attached biotic species (Figure 2). SLBS class areas were ob- 409 

served in low backscatter zones (lighter pixels) and were seen as small oscillation ripples 410 

(~ 10 cm wavelength) in the underwater videos (Figure 2).  411 

We have identified two sediment classes from our survey data in H5, namely coarse 412 

sediment (CSed) and sand-2 (SHBS) (Figure 2 and 4). CSed was observed in high-backscat- 413 

ter areas in the SSS mosaic (Figure 4). In the underwater images, CSed class are character- 414 

ized by bedforms with coarse sediments and shell fragments on the lee slope. On the other 415 

hand, the SHBS class are reflected as medium-high backscatter in the SSS mosaics (Figure 416 

4). When viewed at 25-cm resolution of SSS data, the SHBS area shows presence of ripples 417 

with approximately >20 cm of wavelength. This was subsequently verified in the under- 418 

water images as bedforms with shell fragments and coarser sediments on the troughs 419 

(Figure 2).  420 

                       421 

Figure 2. Sediment classes in H3 and H5 that were identified based on sediment and video samples 422 
(NB: laser spacing = 10 cm). The pixel resolution of the side-scan data is 0.25 m. SLBS: sand low- 423 
backscatter; SHBS: sand high-backscatter. The location of the video and grab samples are presented in 424 
Figure 3 and 4. 425 
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 426 

Figure 3. Side-scan mosaics collected in 2017 and 2018 with the location of sampling stations in H3. 427 
The locations of the images presented in Figure 2 are represented by squares. 428 

 429 

Figure 4.  Side-scan mosaics collected in 2017 and 2018 with the location of sampling stations in H5. 430 
The location of the video and grab sample images presented in Figure 2 are denoted by squares. 431 

3.2. Ensemble Model Performance 432 

Of the 240 individual models that were created, only models with TSS value of >0.70 433 

were included in the final ensemble model, which was used to predict the sediment clas- 434 

ses (Table 4). The predictive power and accuracy of the ensemble models are excellent 435 

with high statistical reliability (TSS = >0.8/ ROC= >0.9) (Table 5). The agreement between 436 

the response and explanatory variables was also good (Kappa= 0.4-0.9). 437 

Based on the TSS and ROC scores of the four algorithms, GBM and RF performed the 438 

best in predicting coarse sediments (LagSed and CSed). On the other hand, ANN and 439 

GBM predicted sand very well. CTA had the poorest performance in predicting sediment 440 
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classes with small sample size and few predictor variables. However, despite the poor 441 

performance of the CTA algorithm, it was still able to generate models with TSS scores of 442 

0.7 that were included in the final ensemble. We observed that using only 2-3 models, 443 

instead of four, decreased the predictive accuracy of the ensemble model. 444 

The importance of the predictor variables in the predicting performance of the algo- 445 

rithms are listed in Supplementary Table 2. Briefly, GLCM variables such as correlation, 446 

second moment, homogeneity and contrast highly influence the predictive performance 447 

of the model. Side-scan mosaic, slope, and easting are also important predictor variables. 448 

Notably, we found that SSS mosaic and slope can predict sand areas very well, while 449 

GLCM features of the SSS mosaic can discriminate LagSed and CSed areas.  450 

Table 5. Performance score of the committee-averaged ensemble models for H3 and H5 according 451 
to their TSS, ROC and Kappa. Only models with TSS > 0.7 from the single model runs were in- 452 
cluded in the ensemble model. 453 

Study Area 
Date and Sedi-

ment class 
TSS ROC Kappa 

H3 

2016 LagSed 0.91 0.98 0.63 

2016 SHBS 0.90 0.98 0.66 

2018 LagSed 0.91 0.99 0.90 

2018 SHBS 0.85 0.98 0.72 

H5 

2017 CSed 0.82 0.95 0.61 

2017 SLBS 0.90 0.97 0.49 

2018 CSed 0.86 0.96 0.40 

2018 SLBS 0.83 0.97 0.60 

 454 

3.3. Seafloor Sediment Distribution in H3 455 

3.3.1. Predicted Sediment Distribution in 2016 and 2018 456 

The ensemble models have predicted around 41% of the total area of H3 (1.92 km2 of 457 

4.71 km2) to be LagSed (TSS = 0.91, Table 5), and the remaining 59% of the area as Sand-1 458 

(TSS = 0.85-0.90) based on the 2016 dataset (Figure 5, Table 5). LagSed was predicted with 459 

high accuracy (TSS = 0.91, Table 5) within the sorted bedform area. SLBS surrounds the 460 

bedform feature in the southwest and northeast (Figure 5 and 6).   461 

According to the 2018 dataset, the area of LagSed had slightly increased in 2018 from 462 

41% to 49% of the total area (Figure 5 and Table 7). Sand dominated 51% of the area around 463 

the bedform and some small patches of sand were located within it (Figure 5). The accu- 464 

racy is reliable except inside the bedform area, where the predictions seem to be artefacts 465 

from the side-scan mosaics that were used as input data in the models, hence they were 466 

excluded in the committee-averaged predictions (Figure 6). 467 

 468 
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 469 

Figure 5. Predicted seafloor sediment classes in H3 for the year 2016 and 2018. Mean probability should be interpreted with 470 
the uncertainty map as reference. Areas with high uncertainty (red color) indicates low confidence that LagSed and Sand 471 
will occur in that location.  472 

3.3.2. Seafloor Sediment Distribution Maps of H3 473 

Overlaying the class-specific predictions into one map based on the percentage of 474 

their probability of occurrence have resulted in statistically reliable seafloor sediment map 475 

with overall accuracy of 100% (Table 6, Figure 6). Both maps were able to classify the high 476 

backscatter bedform as LagSed and its surrounding area as sand (Figure 6).  477 

 478 

3.3.3. Changes in Seafloor Sediment Distribution Maps of H3 479 

The transition analysis of the seafloor sediment maps in H3 showed that most of the 480 

changes within the 17 months have happened around the boundary of lag sediment and 481 

sand-1 (SLBS) class area (Figure 6). Lag sediment class was more affected by the transition, 482 

than the surrounding sand areas that were mostly unchanged (persistence = 2.03 km2 of 483 

4.71km2) (Table 7). 484 

Along the boundary of the two classes, we noticed that most sand class shifted into 485 

LagSed class, particularly in the northeast and southwest portion (Figure 7). Moreover, 486 

most of the sand-to-LagSed transitions occurred within the bedform area. This transition 487 

has caused 16.3% increase in the area coverage of LagSed in 2018 and resulted to 8% loss 488 

of the sand class area in the map (Table 7). However, this loss for sand class is lower than 489 

its 43% area coverage which remained as unchanged for two years.  490 

Overall, 2.26 km2 (48%) of the map have changed in 2018 where LagSed is the most 491 

affected class. 492 

 493 
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 494 

Figure 6. Seafloor sediment distribution maps of H3 and the sediment shifts that occurred between 2016 and 2018 (17 495 
months apart) 496 

Table 6. Statistical summary of the accuracy assessments of the ensemble maps 497 

Study Area Date  Overall Accuracy 

H3 
2016  1.00 

2018  1.00 

H5 
2017  0.94 

2018 0.86 

 498 

Table 7. Summary of gains and losses per sediment class. Values presented are calculated in respect with the total study area 499 
(H3= 4.71 km2, H5 = 1.81 km2) 500 

 501 

3.4. Seafloor Sediment Distribution in H5 502 

3.4.1. Predicted Sediment Distribution in 2017 and 2018 503 

The two parallel bedform features in H5 were predicted as CSed class, while the sur- 504 

rounding areas were classified asSand-2 (SHBS). Some areas outside the features were 505 

H3 2016 2018 Gain Loss Persistence 

LagSed 1.92 km2 (41%) 2.32 km2(49 %) 0.76 km2 (16%) 0.37 km2 (8%) 1.55 km2 (33%) 

SLBS 2.78 km2 (59%) 2.39 km2 (51%) 0.37 km2 (8%) 0.76 km2 (16%) 2.03 km2 (43%) 

Total   1.36 km2 (24%) 1.36 km2 (24%) 3.58 km2 (76%) 

H5 2017 2018    

Csed 0.67 km2 (37%) 
0.67 km2 

(37.2%) 
0.16 km2 (8.72%) 0.16 km2 (8.68 %) 0.52 km2 (29%) 

SHBS 1.13 km2 (62.8%) 
1.14 km2 

(62.9%) 
0.16 km2 (8.68 %) 0.16 km2 (8.72%) 0.98 km2 (54%) 

Total   0.32 km2 (17.4%) 0.32 km2 (17.4%) 1.5 km2 (83%) 
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also predicted as CSed especially in the 2018 map, but the accuracy of this prediction is 506 

low (Figure 7).  507 

In 2017, the two features have been predicted as CSed with good accuracy (TSS = 0.82, 508 

Table 5). However, some areas in the northeast of the bedforms were not classified (Figure 509 

7). Around 63% of the total area of H5 (1.81 km2) was predicted as SHBS and only 37% 510 

was predicted to be CSed. The prediction of SHBS in 2017 is particularly good (TSS=0.90) 511 

(Table 5, Figure 7). 512 

In 2018, some areas in the northeastern portion of H5 were predicted as CSed (TSS = 513 

0.86, Table 5) but with higher uncertainty (Figure 7). The prediction has also more visible 514 

noise or artefacts compared to the 2017 modelled data. The prediction of SHBS in 2018 has 515 

lower probability than in 2017 (TSS=0.83) (Figure 7). In both maps, CSed are well-defined 516 

in the southwest but seem to fade towards the northeast.  517 

                 518 

Figure 7. Predicted areas of coarse sediment and sand-2 classes in H5 for the year 2017 and 2018. 519 

3.4.2. Seafloor Sediment Distribution Map of H5 520 

The ensemble maps of H5 have both received a comparable and good statistical score 521 

(Figure 8 and Table 6). Despite the artefacts in the original data (Figure 4), the 2017 map 522 

still obtained 94% overall accuracy (Table 6, Figure 8). The 2018 ensemble map has lower 523 

but still good accuracy of 86%, which indicate that the observed data (ground-truth) were 524 

classified correctly (Table 6, Figure 8).  525 

Although, interpretation of the map must be done with care because of the artefacts 526 

in the raw data. The final ensemble maps (Figure 8) can be used to guide the interpretation 527 

if map accuracy is the main concern. These maps were generated using the committee- 528 

averaged ensemble models of which the areas with high uncertainty were excluded in the 529 

final prediction.  530 

 531 

3.4.3. Changes in Seafloor Sediment Distribution Maps of H5 532 

By 2018, 35% (0.63 km2) of the 2017 sediment distribution map have changed within 533 

4 months. These changes were observed along the boundary of the classes and in the 534 

north-northwest portion of H5 (Figure 8). However, both sediment classes have gained 535 

and lost almost the same amount (Table 7). For example, CSed gained 8.72% of area cov- 536 

erage in 2018 from SHBS but also lost 8.68% of its area to SHBS in the same year.  537 

We observed that the CSed-to-Sand class transition mainly occurred in the north- 538 

northeast facing side of the bedforms, and the CSed class gained more area in the north- 539 

west (Figure 8).  540 

Overall, the CSed class transitioned the most (29%) and ~54% (0.98 km2) of the SHBS 541 

class area remained the same.  542 

 543 

 544 
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             545 

Figure 8. Predicted sediment distribution maps and the detected sediment shifts in H5 between 2017 and 2018 546 
(four months apart) 547 

4. Discussion 548 

4.1. Predicting Seafloor Sediments with Limited Ground-Truth Samples 549 

The accuracy of the predicted seafloor sediments in a heterogenous area, like the Sylt 550 

Outer Reef, can be influenced by several factors that may negatively influence results of 551 

the modelled sediment distribution maps [30]. These factors include (1) an inadequacy of 552 

the selected classification system, (2) a low discriminatory power of the predictors, or (3) 553 

a mismatch between the response (i.e., grab sample) and predictor variables (e.g., 554 

backscatter mosaic). In addition, an unequal number of samples between sediment classes 555 

may result in under- or over-predictions in the modelling results[52] . Furthermore, dis- 556 

crepancies between different techniques can be very large and some models may be more 557 

sensitive to sampling bias, which might reduce model transferability and selection 558 

[24,62,75]. These issues can be alleviated by creating an ensemble map that aggregates 559 

individual predictions into one map and by adopting a class-specific modelling approach 560 

that models the spatial distribution of grain-size classes without bias to the dominant class 561 

[11,30,34]. Moreover, ensemble modelling can compensate for unwanted inter-model var- 562 

iability and model selection bias, by aggregating the results of multiple models into one 563 

general prediction [24,25]. 564 

The probability of occurrence of different sediment classes was modelled for two dif- 565 

ferent locations and different temporal scales. In this regard, we first assumed that we 566 

would produce highly variable results, but we achieved comparable outputs. For exam- 567 

ple, GBM and RF models were able to predict coarse sediments (i.e., LagSed and CSed) in 568 

both H3 and H5. Moreover, there have been similarities in the important variables that 569 

predict specific sediment classes (Supplementary Table 1). In this regard, we have tested 570 

the potential of our approach to different study areas, different spatial scales (larger or 571 

smaller scale), and for repeated surveys.  572 

However, the most important factors that influenced our results are the quality of 573 

input data. Environmental predictor variables influence the probability of occurrence [25]. 574 

As we have seen, the nadir artefacts from the SSS mosaics were reflected in the probability 575 

of occurrence maps (Figure 5 and 7). This implies that the quality of the data is important 576 

when performing our methodological approach.  577 

In addition, we observed that the spatial distribution of the ground-truth samples 578 

highly influenced the prediction. This issue was addressed by generating three sets of 579 

randomly selected pseudo-absences, which substantially improved the model predic- 580 

tions.  In species distribution modelling, pseudo-absences are meant to be compared 581 

with the presence data and help differentiate the conditions under which species can oc- 582 

cur or not. Therefore, selecting the appropriate number and strategy of generating  583 

pseudo-absences may optimize model performance [55]. 584 

In this regard, survey design is important before collecting field data to ensure that 585 

all samples for each sediment class is well-distributed (spatially). The outputs of this study 586 
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can be utilized for this purpose. For example, the probability of occurrence and uncer- 587 

tainty maps can guide scientists or seafloor mappers to guide the sampling campaign and 588 

would thus make the survey more precise and time efficient. 589 

Overall, predicting multiple sediment classes one-by-one using ensemble models 590 

have improved the accuracy of our predictions. The class-specific modelling approach 591 

(i.e., classifying the classes one-by-one) has improved the predictions because it lessens 592 

the bias to the dominant class and reduced the effect of imbalance data. This approach 593 

differentiates our study from other studies on sediment mapping, which applied ensem- 594 

ble modelling and supervise classification methods, but modelled multiple sediment clas- 595 

ses at the same time [11–13,17,21,30,31].  596 

 597 

4.2. Seafloor Sediment Distribution in the Sylt Outer Reef from 2016 to 2018 598 

Sediment distribution is an important parameter for the understanding of benthic 599 

habitats, for the management of maritime economic activities, and for the monitoring of 600 

impacts of human activities on the seafloor[9,76,77]. We predicted and mapped the possi- 601 

ble seafloor sediment types for two areas in the Sylt Outer Reef Special Area of Conserva- 602 

tion.  603 

In H3, the bedform feature was predicted to be composed of lag sediments and sur- 604 

rounded by sand. Among the two sediment classes, the LagSed class was more affected 605 

by sediment shifts that occurred within the bedform area. We observed that more LagSed 606 

class has appeared especially nearby the boundary of the bedform, while more sand class 607 

was seen inside the bedform after two years. Boundaries of the bedforms were observed 608 

to be the most vulnerable to sediment shifts [39,40,78–80]. On the other hand, the sur- 609 

rounding sandy areas seem to be stable over the period of observation.  610 

The sediment class in H5 was more difficult to predict than in H3, because of the 611 

mismatch of the ground-truth data with the predictor variables (acoustic data). For exam- 612 

ple, areas that were interpreted to be sand based on grainsize analysis appeared as areas 613 

with medium-high backscatter strength (dark pixels), instead of showing low backscatter 614 

strength (light pixels) like the sandy area in H3 (Figure 3). The stronger backscatter re- 615 

sponse of the sandy area can be explained by the more varied morphology and sediment 616 

composition of H5, as observed in the underwater videos (Fig. 2). In some part of the 617 

sandy areas of H5, the seafloor was characterized by the presence of small wave ripples 618 

(wavelength= >20 cm) and was partly covered by coarse sediments (Fig. 2). Moving a few 619 

meters away from the wave ripples, the seafloor becomes dominated by small ripples and 620 

finer sand fractions. These variations in seafloor roughness influenced the backscatter in- 621 

tensity that was recorded by the sonar. Rough and hard surface returns high backscatter 622 

intensity, while smooth and soft surface sends low backscatter intensity to the sonar 623 

[81,82]. As a result, the sandy areas of H5 appears as patches of medium-high backscatter 624 

in the SSS mosaics, in contrast to the low backscatter response of the sandy areas in the 625 

H3 mosaics (Fig. 2). 626 

Like H3, shifts in sediment class occurred along the boundaries of the two bedforms 627 

in H5. Although, the quantity of transition between the two classes are almost the same, 628 

it does not imply that changes did not occur, but rather signify that the intensity of 629 

changes are low. Shifts from CSed to SHBS class occurred at the northeast facing side of 630 

the bedform features, while Sand-to-CSed transitions were observed in the north-north- 631 

west area of H5.  632 

In summary, sediment shifts were observed along the boundaries of the bedform fea- 633 

tures but the morphology of the bedforms are relatively stable—no additional bedforms 634 

or drastic changes were documented. These findings are in accordance with our previous 635 

study [40] and with other studies on changes in sediment distribution in the North Sea, 636 

where the gravel/coarse substrates and fine substrates fluctuated but are overall stable 637 

[39,74,83]. In our previous study we monitored the boundary lines to detect sediment 638 

shifts, but here we looked at the changes in the modelled sediment distribution maps. The 639 
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results of both studies are comparable i.e., the sediment shifts were mainly observed in 640 

the northeast and southwest direction of the bedforms. The spatial sediment transitions 641 

that we detected in this study may be attributed to the fluctuations of the sandy materials 642 

along the boundary. The deposition or erosion (winnowing) of mobile sand fractions co- 643 

vers or uncovers the coarser sediments underneath , which is largely driven by tidal cur- 644 

rents and storm events [39,40,80]. The mobilization of sandy materials along the boundary 645 

caused the oscillation of the boundaries, instead of moving the boundaries in one direc- 646 

tion[40]. 647 

 648 

4.3. Sediment transitions and their implications 649 

Monitoring changes in sediment distribution maps is especially important in areas 650 

with heterogenous seafloor cover, where tidal currents, wave actions, and wind-driven 651 

flows determine the seabed dynamics and may induce drastic changes in the sediment 652 

distribution pattern [30,74,84]. Moreover, sediment transition can be used to predict spe- 653 

cies responses to habitat change [1,3,4,85].  Changes in sediment composition along sed- 654 

iment gradients/boundaries can alter the behavior and distribution of benthic species. For 655 

example, the loss of coarse sediments forced benthic invertebrate communities to leave 656 

their habitat and move to fine sediments, which consequently changed the community 657 

compositions (taxa presence and absence)[5]. In addition, changes in detrital resources 658 

(i.e., coarse sediments), which serves as refuge in a soft sediment system, causes decline 659 

in macroinvertebrate species[6]. Therefore, monitoring of changes in seafloor sediments 660 

is vital for the conservation of benthic biodiversity and detrital resources, especially for 661 

important marine protected areas such as the Sylt Outer Reef. 662 

Accurate prediction of sediment class is necessary to be able to detect the actual sea- 663 

bed change in a highly complex area [30,74,84]. In this regard, sediment distribution maps 664 

need to be updated to develop and implement appropriate strategies to manage maritime 665 

activities and marine conservation areas. However, the question is how often we must 666 

update these maps? 667 

In this study, the sediment transitions imply that sediment dynamics in the western 668 

part of the Sylt Outer Reef are highly active and can cause conceivable changes in the 669 

sediment distribution maps in a short period of time. For example, approximately 48% of 670 

the sediment distribution map of H3 appears to have changed after two years, while 35% 671 

of the maps in H5 experienced changes in just four months.  672 

Therefore, in areas of the Sylt Outer Reef with seafloor features like in H3 and H5, 673 

seafloor monitoring can be conducted at approximately no more than 5 years, because by 674 

then the sediment distribution may have changed substantially at the boundaries of the 675 

features. This approximation is based on our findings for the two sites in the Sylt Outer 676 

Reef, where we observed that this survey interval is necessary to provide reliable recom- 677 

mendations for monitoring purposes. Moreover, to find out whether the observed 678 

changes have happened constantly between the studied time periods or because of an 679 

extreme event (e.g., severe storms), additional surveys ideally before and after a storm are 680 

necessary. The surveys can verify the actual cause of these changes and can evaluate the 681 

impact of storms to the sediment distribution pattern.  682 

Seafloor dynamics are likely to be as variable as tidal currents or ocean climate pat- 683 

terns, and thus a regular interval (i.e., 5 years) may miss important dynamics. But moni- 684 

toring a large area can be time consuming and costly. In this regard, repeated monitoring 685 

of subsets of areas, like this study, can be an alternative to evaluate seafloor changes until 686 

it becomes evident that a new “full” survey is necessary. Moreover, since coarse sediments 687 

(i.e., LagSed and CSed) in the German Bight are important habitats for epibenthic assem- 688 

blages, and sediment transition can have adverse effects in their ecosystem, mapping 689 

these areas is important for habitat monitoring and conservation efforts [38,85].  690 

 691 

4.4. Outlook  692 
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Information on sediment distribution was found to be a very good predictor of ben- 693 

thic species densities and distribution [8,50,86,87]. Hence, our modelled prediction of sed- 694 

iment distribution can be used for marine conservation studies as input to species distri- 695 

bution modelling [1,50,87] and for monitoring of the impacts of human activities 696 

[2,9,76,88]. 697 

Moreover, the seafloor sediment maps that were generated in this study can provide 698 

information to future seafloor mapping efforts. The maps can be used by seafloor mappers 699 

in planning their survey and to design a systematic ground-truth sampling approach, 700 

which may improve the accuracy of the seafloor sediment maps in the future.  701 

In this study, we utilized bathymetric derivatives from BTM, hydrodynamic models, 702 

and textural features from SSS backscatter to predict sediment distribution. Another ap- 703 

proach that can be explored in the future is to incorporate other predictor variables to 704 

model sediment distribution from MBES data, such as spectral features from dual-fre- 705 

quency MBES [89], marine geomorphometry features [90], and features from angular re- 706 

sponse analysis of MBES backscatter[91]. Moreover, the methods performed in this study 707 

can be tested to model multiple sediment classes (i.e., more than two) and to test its ap- 708 

plicability to a larger spatial scale.   709 

Furthermore, the methodological approach that we presented can also be applied to 710 

other types of underwater exploration studies where ground-truth data is scarce such as 711 

reef mapping [12], deep-sea sediments mapping[15], habitat modelling in remote ar- 712 

eas[50], and to detect sunken structures for underwater archaeology[92]. Hence, the meth- 713 

ods in this study can be adapted not only by geologists but also by biologists, ecologists, 714 

archaeologists, and environmental scientists. 715 

 716 

5. Conclusions 717 

In this study, we tested the capacity of class-specific ensemble modelling using BIO- 718 

MOD2 as a reliable and reproducible approach for seafloor sediment mapping and mon- 719 

itoring.  Unlike the usual thematic mapping, we conducted class-specific predictions us- 720 

ing BIOMOD2 to classify areas with limited or lacking ground-truth data. We demon- 721 

strated how our approach can address the limitation of minimal amount of available 722 

ground-truth data by reducing the effect of data imbalance and by combining multiple 723 

model predictions. We have shown that by aggregating bits of information, we can gen- 724 

erate reliable information on seafloor integrity. Moreover, the methodological approach 725 

and results that we presented can be used as a tool for seafloor mapping and monitoring 726 

and provides information on the seafloor sediment dynamics.  727 
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Appendix A 744 

Steps of Ensemble Mapping 745 

The procedure was conducted using the raster analysis tools of ESRI ArcGIS 10.7. 746 

Steps to ensemble each class-specific prediction into a single map are as follows: 747 

 748 

1. The raster for each sediment class was converted into integer format to allow raster 749 

analysis.  750 

2. Majority filter using the closest eight cells as a filter was run to join the small cells 751 

with the majority cells to reduce the noise in the raster.  752 

3. Using the cell statistics function of ArcGIS, the maximum value (highest probability 753 

%) of the input rasters (e.g., raster for all sediment classes in H3 in 2016) was com- 754 

puted. The output is the overlaid maximum scores of the sediment classes in one 755 

raster map (OverallMax).  756 

4. After generating the OverallMax, each original raster (i.e., majority filtered) was sub- 757 

tracted from the OverallMax raster where 0 would be the cells with the max value in 758 

each. Two new rasters were created and called here as ClassMax1 and ClassMax2.  759 

5. For each of the ClassMax rasters, set the 0 values to 1 for ClassMax1, and 2 for Class- 760 

Max2 using the Con function in raster calculator (e.g., Con (ClassMax1==0,1,0)). The 761 

result would be two new raster files with reclassified cell values. ClassCon 1 with the 762 

cells of maximum scores assigned as 1, and ClassCon2 with maximum scores as- 763 

signed as 2. For example, the max scores of LagSed were assigned 1 and max scores 764 

of sand was assigned 2.  765 

6.  Finally, the two ClassCon rasters were mosaicked to a new raster, where the cell 766 

value of the overlapping areas are the maximum value of the overlapping cells. The 767 

output is the ensemble map of the predictions of the two sediment classes, where the 768 

most probable class was assigned to the location.  769 

 770 

. 771 
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