

Why Arctic?

Over the past four decades, surface air temperature (SAT) in the Arctic has increased by +1.7°C (twice the global rate) and sea ice extent has decreased severely

©Zachary Labe

Why Arctic?

Over the past four decades, surface air temperature (SAT) in the Arctic has increased by +1.7°C (twice the global rate) and sea ice extent has decreased severely

©Zachary Labe

The challenge: Paucity of data!

MOSAIC

PO^tLMAR

MOSAiC expedition

Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition:

- An entire year trapped in ice (September 2019 to September 2020)
- The focus of MOSAiC lied on direct in-situ observations of the climate processes that couple the atmosphere, ocean, sea ice, biogeochemistry, and ecosystem

Universität Potsdam

MOSAIC

POLMAR

CiASOM project

Changes of water isotopes in Arctic Sea ice, Ocean, and atMosphere (CiASOM)

Objectives of CiASOM:

- First comprehensive description of isotopic composition of Arctic water cycle for a complete annual cycle (incl. understudied winter)
- Evaluation of key sea ice, ocean, and atmosphere exchange processes and their impact on Arctic water isotopes
- Imprint of sea ice conditions on the isotopic signature of Arctic water and its representation in coastal pan-Arctic stations

Arctic water compartments

Arctic water compartments

MOSAIC

OM

POLMAR

• GMWL as a reference for co-isotope relationships

- Snow has the most depleted and most variable isotopic signature
- Frostflower isotopic signature is similar to snow, but less samples collected

MOSAIC

OM

POLMAR

- GMWL as a reference for co-isotope relationships
- Snow has the most depleted and most variable isotopic signature
- Frostflower isotopic signature is similar to snow, but less samples collected
- Seawater has the most enriched isotopic signature

MOSAIC

OM

POLMAR

- GMWL as a reference for co-isotope relationships
- Snow has the most depleted and most variable isotopic signature
- Frostflower isotopic signature is similar to snow, but less samples collected
- Seawater has the most enriched isotopic signature

Universität Potsdam

- Possible mixture of snow with sea ice is apparent in lower $\delta^{\rm 18}{\rm O}$ values of some FYI samples

MOSAIC

OM

POLMAR

- GMWL as a reference for co-isotope relationships
- Snow has the most depleted and most variable isotopic signature
- Frostflower isotopic signature is similar to snow, but less samples collected
- Seawater has the most enriched isotopic signature
- Possible mixture of snow with sea ice is apparent in lower $\delta^{\rm 18}{\rm O}$ values of some FYI samples
- SYI on the upper side of the plot with low $\delta^{{}_{18}}\text{O}$ values down to -10%

MOSAIC

OM

POLMAR

- GMWL as a reference for co-isotope relationships
 - Snow has the most depleted and most variable isotopic signature
- Frostflower isotopic signature is similar to snow, but less samples collected
- Seawater has the most enriched isotopic signature
- Possible mixture of snow with sea ice is apparent in lower $\delta^{\rm 18}{\rm O}$ values of some FYI samples
- SYI on the upper side of the plot with low $\delta^{{\tt 18}}{\tt O}$ values down to -10‰
- Rafted Ice isotopes plot over FYI and SYI

MOSAIC

OM

POLMAR

- GMWL as a reference for co-isotope relationships
 - Snow has the most depleted and most variable isotopic signature
- Frostflower isotopic signature is similar to snow, but less samples collected
- Seawater has the most enriched isotopic signature
- Possible mixture of snow with sea ice is apparent in lower $\delta^{\rm 18}{\rm O}$ values of some FYI samples
- SYI on the upper side of the plot with low $\delta^{{}_{18}}\text{O}$ values down to -10‰
- Rafted Ice isotopes plot over FYI and SYI

Universität Potsdam

• Melt water layer of ponds have wider range of more depleted isotope values compared to seawater

MOSAIC

OM

POLMAR

- GMWL as a reference for co-isotope relationships
 - Snow has the most depleted and most variable isotopic signature
- Frostflower isotopic signature is similar to snow, but less samples collected
- Seawater has the most enriched isotopic signature
- Possible mixture of snow with sea ice is apparent in lower $\delta^{\rm 18}{\rm O}$ values of some FYI samples
- SYI on the upper side of the plot with low $\delta^{{\tt 18}}{\tt 0}$ values down to -10‰
- Rafted Ice isotopes plot over FYI and SYI

- Melt water layer of ponds have wider range of more depleted isotope values compared to seawater
- Lead plots mainly on the upper part of the line with a few samples with snow signature

MOSAiC track

Seawater δ^{18} O along the MOSAiC track

Seawater δ^{18} O and Arctic water salinity

Seawater $\delta^{18}O$ (Leg 4)

Vapor and sea water isotopes in the mirror of air temperature and salinity

6

Snow-sea ice: vertical isotopic gradient

- The offset between top and bottom layers of snow: potential processes in play such as sublimation of deposited snow
- Mixture of bottom layer of snow with sea ice is more apparent from October to May

Conclusions

- > MOSAiC expedition provided a unique opportunity to have a first-hand isotope dataset of different compartments forming the Arctic water cycle.
- Seawater isotopes get progressively depleted as Polarstern moves towards less saline water: what is the origin of this depleted water?
- Fresh snow layering on top of the sea ice displays a progressive enrichment from surface to bottom. Can we disentangle post-depositional metamorphic processes?

CiASOM contributors and co-authors: Dorothea Bauch, Ellen Damm, Daiki Nomura, Mats Granskog, Alessandra D'Angelo, Stefanie Arndt

Contacts: Moein.Mellat@awi.de

Thank You!

©Photo by Esther Horvath

Seawater (Leg 5)

