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Abstract
In recent years, wildfires became more predominant in northern high latitude permafrost regions. Arc-
tic warming, as a consequence of climate change, causes drying of vegetation being more flammable and
promotes lightning incidents. Hence, the Arctic wildfire season extents accompanied by an increase in
wildfire frequency as well as burn severity (BS). By now, boreal forests are known as carbon sink but
will become a carbon source, further enhancing climate change. Within loss in surface organic layer
due to wildfires, the thermal conductivity of the soils changes, impacting the underlying permafrost.
Thawing permafrost again releases greenhouse gasses, resulting in a positive feedback, further accel-
erating climate warming. Regarding these global consequences of wildfires, a better understanding of
small regional scale processes is necessary for reliable future predictions.
Therefore, the aim of this study is to assess post-fire impacts on permafrost in the north-eastern

Siberian Yana river catchment using remote sensing data. As previous studies announced a future
spread of wildfires northward from Taiga to Tundra ecosystems, both will be considered in the study
analysis to distinguish between their influence quantity.
In order to answer the research question, the effects on permafrost after wildfire were investigated

using 9 Siberian fire sites including their accompanied control sites, along the Yana river. The yearly
mean land surface temperature (LST), calculated from Landsat images over a time period from 2006-
2020 for the summer months (June, July, August) serves therefore as data basis. Based on that, the
Permafrost_CCI products including the yearly mean ground surface temperature (GST) and active
layer thickness (ALT) between 1997-2018, were consulted for comparison purposes. Created time series
of LST, GST and ALT were individually analyzed by visual interpretation, descriptive statistics and
trend analysis. Finally, GST and ALT time series were correlated against LST time series. Additionally,
the normalized burn ratio (NBR) was calculated from Landsat images to get supportive information
about the BS and vegetation recovery, as these factors play a very important role in influencing the
magnitude of permafrost variations due to wildfires.
The main findings show a correlation between LST and ALT resulting in a decrease of permafrost as

the ALT increases within increasing LST after a wildfire. The coherence between LST and GST does
not show unique results though, but result in increasingly warmer temperatures in the soil as well.
Regarding differences between Taiga and Tundra ecosystems, impacts are causing a greater threat for
permafrost in Tundra regions, especially in context with future predicted increase of wildfire frequency
and BS. Nevertheless, studying permafrost remains still challenging due to the remoteness of the study
area, resulting in a lack of in-situ data, as well as remote sensing data.



Zusammenfassung
In den letzten Jahren haben Waldbrände in den Permafrostgebieten nördlicher hoher Breiten immer
häufiger zugenommen. Die Erwärmung der Arktis als Folge des Klimawandels führt dazu, dass die Veg-
etation durch Austrocknung entzündlicher wird und Blitzeinfälle begünstigt werden. Daher verlängert
sich die arktische Waldbrandsaison, begleitet von einer Zunahme der Häufigkeit von Waldbränden
sowie deren Ausmaß. Inzwischen sind boreale Wälder als Kohlenstoffsenke bekannt, werden aber zu
einer Kohlenstoffquelle, die den Klimawandel weiter verstärkt. Durch den Verlust der organischen
Oberflächenschicht durch Waldbrände ändert sich die Wärmeleitfähigkeit der Böden, was sich auf den
darunter liegenden Permafrostboden auswirkt. Das Auftauen des Permafrosts setzt wieder Treibhaus-
gase frei, was zu einer positiven Rückkopplung führt und die Klimaerwärmung weiter beschleunigt. Im
Hinblick auf diese globalen Folgen von Waldbränden, ist ein besseres Verständnis der kleinräumigen
Prozesse notwendig, um zuverlässige Zukunftsvorhersagen treffen zu können.
Das Ziel dieser Studie ist es daher, die Auswirkungen nach einem Waldbrand auf den Permafrost

im nordöstlichen sibirischen Yana Flusseinzugsgebiets mit Hilfe von Fernerkundungsdaten zu bew-
erten. Da frühere Studien eine zukünftige Ausbreitung von Waldbränden nach Norden von Taiga-
bis Tundra-Ökosystemen angekündigt haben, werden beide in der Studienanalyse berücksichtigt, um
zwischen ihrer Einflussgrößen zu unterscheiden.
Um die Forschungsfrage zu beantworten, wurden die Auswirkungen auf den Permafrost nach einem

Waldbrand anhand von 9 sibirischen Feuerstellen und deren Kontrollstellen entlang des Yana-Flusses
untersucht. Als Datengrundlage dient daher die jährliche mittlere Landoberflächentemperatur (LST),
berechnet aus Landsat-Bildern über einen Zeitraum von 2006-2020 für die Sommermonate (Juni, Juli,
August). Darauf aufbauend wurden zu Vergleichszwecken die Permafrost_cci Produkte, einschließlich
der jährlichen mittleren Bodenoberflächentemperatur (GST) und der aktiven Permafrost Schichtdicke
(ALT) zwischen 1997-2018, herangezogen. Erstellte Zeitreihen von LST, GST und ALT wurden einzeln
durch visuelle Interpretation, deskriptive Statistik und Trendanalyse analysiert. Schließlich wurden
GST- und ALT-Zeitreihen mit LST-Zeitreihen korreliert. Darüber hinaus wurde die normalisierte
Verbrennungsrate (NBR) aus Landsat-Bildern berechnet, um unterstützende Informationen über den
Verbrennungsgrad (BS) und die Vegetationserholung zu erhalten, da diese Faktoren eine sehr wichtige
Rolle bei der Beeinflussung des Ausmaßes der Permafrostvariationen aufgrund von Waldbränden spie-
len.
Die wichtigsten Ergebnisse zeigen eine Korrelation zwischen LST und ALT, welche zu einer Ab-

nahme des Permafrosts führt, da nach einem Flächenbrand ALT mit ansteigender LST zunimmt.
Die Kohärenz zwischen LST und GST zeigt jedoch keine eindeutigen Ergebnisse, führt aber auch zu
zunehmend wärmeren Temperaturen im Boden. Was die Unterschiede zwischen Taiga- und Tundra-
Ökosystemen betrifft, so führen die Auswirkung zu einer größeren Bedrohung für den Permafrost
in Tundra-Regionen, insbesondere im Zusammenhang mit der künftig prognostizierten Zunahme von
Waldbränden und BS. Dennoch bleibt die Untersuchung von Permafrost aufgrund der Abgelegenheit
des Untersuchungsgebiets eine Herausforderung, was zu einem Mangel an In-situ-Daten sowie Fern-
erkundungsdaten führt.
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1. Introduction

Due to climate change, the Arctic has warmed at more than twice to global average over the last
30 years (Cohen et al., 2014), also known as the Arctic amplification. According to Northern High
Latitudes weather stations, the annual mean surface air temperatures have risen by almost 2°C since
1900 (Serreze and Barry, 2011). This becomes noticeable in a period of unusually high temperatures,
Siberia experienced in the first 6 months of 2020, hitting record-breaking temperatures of 38°C in the
town of Verkhoyansk (World Meteorological Organization (WMO)). The phenomenon of the Arctic
amplification is evidenced by shrinking sea ice cover, decreasing land snow cover by 7-11% during
1970-2010 in the northern Hemisphere (Brown and Robinson, 2011), permafrost thawing and may also
lead to an increase of wildfire occurrence (McCarty et al., 2020).
Wildfires are the most widespread ecosystem disturbance in the Boreal biome (Gibson et al., 2018).

Their regeneration strongly depends on a complex interplay between numerous drivers in the pre-
and post-fire habitat (Chu et al., 2017) and it may take decades to return to pre-fire conditions, if
ever possible. The assessment of these drivers, such as vegetation, landforms, fire regimes, hydrology,
regional climate, soil properties and the time since fire, states the basis in understanding the long-term
effects of fire disturbances. Chu et al. (2017) found out, that, especially in larch forests, the primary
controllers were burn severity and water content.
Especially the Sakha Republic of Siberia has been one of the most active fire regions in the last

2-3 years. According to Russia’s Federal Forestry Agency, in 2019 almost three million hectares of
land were considered being affected by fires in Siberia. Long-term statistics of annual wildfires show
that they have strongly increased in scale and intensity, showing a positive trend (R2 = 0.69 and 0.47,
respectively; p < 0.05; Ponomarev et al. (2016)). The highest correlation of air temperature anomalies
and annual number of fires occurred during June-July (r = 0.67; Ponomarev et al. (2016)). Therefore,
correlations between precipitation anomalies within all Siberia and the annual burned area, were not
significant but might be relevant at a smaller timescale Ponomarev et al. (2016). For example in central
Siberia and the Trans-Baikal region a relation between the occurrence of extreme wildfire events and
soil moisture, same as precipitation anomalies, was found (Bartsch et al., 2009; Forkel et al., 2012).
Another sign for rapid changes in the Arctic region is the occurrence of an even longer Arctic wildfire

season due to temperature rise (McCarty et al., 2020). Although the typical Arctic fire season begins
in July and ends in August (+/- a few weeks), many 2020 fires were already detected in May, even
though the aboveground vegetation was not yet flammable (McCarty et al., 2020). This may be due
to the occurrence of zombie fires, which are fires of previous growing seasons, smouldering below the
surface for months or even years (Hu et al., 2018). Thus, they are independent from ignition sources
such as lightning or campfires.
Additionally, the shortening of the frozen season in recent years have resulted in Arctic greening

1



1. Introduction

(Kim et al., 2012). This leads to a future projection in which at least half of the vegetated areas will
shift to a different vegetation class until 2050 (Barrett et al., 2012; Pearson et al., 2013). The shift
in vegetation, as well as the rise in temperatures, may lead to wildfires moving northward. Northern
tundra landscapes are typically too cold, wet and icy to burn, but the hot and dry weather dried out
its vegetation, enabling fires (McCarty et al., 2020). If wildfires were to become a regular occurrence
on the thawing tundra, they could reshape entire ecosystems dramatically, which could lead to new
species taking over, and perhaps, causing even more fires to evolve. It still remains unclear how far
north fires are spreading and what kind of ecosystem states the prime ignition source (Stone, 2020).
Boreal forests encompass ~30% (~1,135 Mha) of the global forest area (Brandt et al., 2013; Gauthier

et al., 2015) and are a significant large sink of carbon dioxide, usually helping to mitigate the impact
of global climate change. However, due to the increase in wildfire occurrence, much more toxic gases
and pollutants are released into the atmosphere, converting the carbon sink to a source for greenhouse
gasses (Guo et al., 2019). Arctic fires can release around 50 megatonnes of carbon dioxide in June
alone (WMO). This can be compared to Sweden’s total annual emissions (WMO).
Depending on the drivers, previous studies have indicated, that forest wildfires could result in irre-

versible degradation of permafrost (Gibson et al., 2018). Still, the impacts of wildfires on ecosystems
and permafrost ecosystems in general are not well understood. A central question is how long and to
which degree wildfires influence the thermal regime (Gibson et al., 2018).
Due to this knowledge gap and the complex interactions between wildfires and permafrost, their

consequences are expected to be strongly underestimated in climate change scenarios and projections
of future permafrost thawing. Considering recent trends of increasing fire activity, more attention
should be paid to the research on this topic.
The aim of this study is to assess the impacts of wildfires on the permafrost environment in the

Siberian Yana river catchment with the help of remote sensing techniques. This area is extremely
affected by a strong increase of wildfires in recent years (Figure 1.1). As wildfires lead to an increase in
canopy temperatures, it can be detected by remote sensing measurements in the thermal infrared (TIR)
as a deviation of land surface temperatures (LST). A positive relationship is expected between LST as
data basis, permafrost and ground surface temperatures (GST), same as active layer thickness (ALT).
Due to the expansion of wildfires further north, both Taiga and Tundra wildfires will be compared.

2



1. Introduction

Figure 1.1.: Amount of wildfires in the Yana river catchment from 1999-2020.

1.1. Current status of satellite-derived LST

LST is the radiative skin temperature of the surface and states one of the key parameter for various
scientific disciplines, as it describes the interaction (e.g water/energy exchange) between the land
surface and the atmosphere (Li et al., 2013a). It can be estimated from the Top-of-Atmosphere
brightness temperatures gained from geostationary satellites. An accurately understanding of LST at
both, global and regional scales improves the evaluation of land surface-atmosphere processes, providing
a valuable description of the surface state in regard to physical properties (e.g vegetation, soil moisture).
Due to the importance of LST, there is strong interest in developing algorithms to measure satellite-

based LST. Typical algorithms are the Mono Window Algorithm (MWA), Radiative Transfer Equation
(RTE) method, Single Channel Algorithm (SCA) and the Split Window Algorithm (SWA) (Parastatidis
et al., 2017; Vlassova et al., 2014; Wang et al., 2015). Their accuracy is primarily constituted by the
quality ot the Land Surface Emissivity (LSE) and radiometric measurements (Sekertekin and Bonafoni,
2020). Due to the variability of the Earth surfaces and the necessary knowledge about the atmosphere,
LSE, sensor specifications (e.g. viewing angle, spectral and spatial resolution) and meteorological
states, the retrieving of LST remains still challenging (Li et al., 2013a; Sobrino et al., 2008). Until
now, no universal method reliably providing accurate LSTs from all satellite thermal infrared (TIR)
data exist (Li et al., 2013b).
Remote sensing techniques enable the detection and monitoring of Arctic changes in vegetation for a

3



1. Introduction

variety of spatial and temporal scales. Aircraft observations are constrained by logistical difficulties in
remote Arctic locations, inclement weather and cost, resulting in a lack of data consistency. In contrast,
satellites are able to theoretically cover large regions on a regular basis, but also faces a number of
challenges (Stow et al., 2004). This includes frequent cloud cover conditions concerning optical remote
sensing systems. By contrast, radar systems have the benefit of providing data regardless of cloud
cover, but are influenced by a different set of associated problems, such as terrain effects and view
angle dependencies (Stow et al., 2004).

1.2. Permafrost

Permafrost is a ground layer (sediment, soil, rocks) that remains below 0°C for at least two consecutive
years (French, 1999). It captures a fifth of the global northern land surface and is therefore an essential
component of the cryosphere (Brown et al., 1997). Depending on the percentages of frozen ground in
a specific area, the Permafrost is segmented into different zones (Table 1.1):

Continuous Discontinuous Sporadic Isolated
100 - 90 % 90 - 50 % 50 - 10 % < 10 %

Table 1.1.: Permafrost zones (Brown et al., 1997).

The top of the permafrost is set by the overlying base of the active layer, while the base is given
by a ground temperature greater than 0°C at depth (Figure 1.2). The active layer at the surface
thaws during the warmer summer months and freezes again in autumn each year. It plays a very
important role in preservation of the permafrost, as it represents the boundary between permafrost
and the atmosphere. Together with the vegetation in summer and snow cover in winter, the active
layer drives the transmission of heat, moisture or gases from and to the permafrost and the atmosphere
respectively. For the assessment of permafrost degradation an understanding of the ALT dynamics in
correlation to the thermal state of permafrost is crucial (Westermann et al., 2015). The more the ALT
increases on average (e.g due to longer and warmer summer), the more difficult it is to freeze again in
winter, leading to a shrinking of the permafrost layer in total.
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1. Introduction

Figure 1.2.: Schematic permafrost soil profile.

Most of the northern regions with frozen ground have been experiencing an increase in temperatures
of permafrost, which are reported by the IPCC Special Report on the Ocean and Cryosphere in
Changing Climate (Pörtner et al., 2019). Accordingly, averaged temperatures across high-mountain
and polar regions have reached a record high since the 1980s showing a recent warming of 0.29°C
± 0.12°C from 2007–2016 (Zhao et al., 2019). This results in future projections that show a drastic
reduction of permafrost distribution (Pörtner et al., 2019). The thawing of permafrost has strong
local and global impacts on the environment. Locally, it affects ecosystems, landscape, economy and
topography. Warming and thawing of frozen ground weakens its physical stability, which causes slope
instabilities, landslides, thaw slumps, and erosion (Philipp et al., 2021). Hence, permafrost thawing has
also an impact on human infrastructure and could result in damaged railroads, buildings or pipelines
(Hinzman et al., 2005).
On a global scale, thawing permafrost accelerates global warming due to the irreversible Permafrost-

CO2-feedback cycle. According to recent estimates, permafrost stores almost twice the amount of
carbon than the atmosphere (1460-1600 billion tones; Schuur et al., 2015). A continuing degradation
of Permafrost could enhance the release of greenhouse gases, resulting in a positive feedback as these
gases further accelerate climate change (Pörtner et al., 2019). Scientists argue that the Arctic greening,
as a result of climate change, could be seen as carbon sink to a certain degree. But so far, there is
still little agreement on the role of northern hemisphere latitudes (NHL) vegetation in CO2 absorption
(Abbott et al., 2016; Trofaier et al., 2017; Voigt et al., 2017). An increase of organic carbon release of
up to 75% by the year 2100 due to collapsing coastlines and Arctic rivers is predicted by Abbott et al.
(2016). Together with carbon emissions caused by wildfires, he assumes a carbon increase multiplied
by a factor four. Regardless of the warming scenario, both boreal forests as well as permafrost regions
might become carbon sources by the end of the century. However, a reduction of human emission rates
could potentially still avoid 65–85% of permafrost carbon release (Abbott et al., 2016).
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1.3. Siberian forests and forest fires

Wildfires are a crucial element in controlling the dynamics of forest ecosystem in the circumpolar
Boreal zone. An enhanced understanding of their direct and indirect, short- to long term impacts
on permafrost LST coupling is explicitly meaningful for future prediction of changes in water cycles,
nutrient and carbon in regard to global warming. Next to the warming triggered by permafrost thaw,
the global warming fastens due to the absence of CO2 emitting plants.
Siberian forests are rich in accumulated fuel and provide perfect conditions for forest fires. Addition-

ally, humidity, precipitation, drying period, forest type, air temperature, topography (elevation, slope
steepness, aspect), solar radiation and the ignition source (human-caused or lightning) are important
factors to light a fuel. Elevation in particular influences lightning frequency, fuel load and precipita-
tion. The aspect affects the fuel condition because steeper south-facing slopes tend to dry faster than
others. Moreover, with an increase in slope, the speed of the fire seems to increase as well (Kharuk
et al., 2007). As the solar radiation decreases from south to north and fuels in the north generally
receive less heat, Tundra wildfires were relatively rare in the past (Kharuk et al., 2016).
Regarding the ignition source, a strong correlation in fire activity and proximity to roads and human

settlements has been observed (Kovacs et al., 2004). Again, elevation plays a crucial role: the higher
the latitude, the lower the likelihood of human-caused fires due to less population density. Therefore,
lightning is the main cause of fires (≤ 90%) in the northern latitudes, which occur especially during
rain-less anticyclonic periods (Ivanova et al., 2010). Moreover, lightning events may cause fires at
several sites at once due to multiple parallel ignitions, which enhances the amount of fire events.
Global warming was predicted to likely lead to an increase in fire frequency, fire intensity and larger
fire size, as it causes an increase in the frequency of lightning strike by roughly 12% per 1C° of warming
(Heim et al., 2021; Romps et al., 2014). In fact, an increase of Tundra fires could already been observed
(Heim et al., 2021; Moritz et al., 2012), which in turn will increase climate warming. While short-term
effects of fires on ecosystems are already well documented (Heim et al., 2021), it is crucial to understand
their long-term effects for sound future predictions.
For meaningful analysis, it is necessary to distinguish between forest stands that have been affected

by fire and stands that were killed by fire, as the effects of a fire are influenced by its type, intensity and
the type of forest. There are three types of fires: surface, crown, and peat fires. The majority of forest
fires in Siberia (90%) are low-intensity surface fires (de Groot et al., 2013; Kharuk and Ponomarev,
2017) which primarily burn surface litter and the forest floor. Especially pine and larch stands are
resistant to forest fires which do not result in a significant stand mortality (Krylov et al., 2014). Surface
fires are further divided into runaway (early spring) and sustained (summer, autumn) fires based on
their speed and combustion characteristics. Runaway fires causes a maturity of only the upper litter
layers, usually damaging no trees. Except for young coniferous stands, surface fires can turn into
crown fires. Therefore, sustained surface fires can cause ground cover and undergrowth mortality, root
damage and damage on trunks of trees. Since the root habitat zone within the permafrost zone is
quite shallow, sustained surface fires are the main cause of forest stand mortality. Crown fires are the
most intense type of fire: They start to spread from the surface, burn along the entire length of trees,
including the top, and take over the entire forest canopy. High-intensity crown fires occur in closed-
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forest stands mostly in the middle and southern taiga. In the case of crown fires, forest mortality is
inevitable; this occurs in 8–10% of the total fire-affected area (Ponomarev et al., 018a,b).
Half of Arctic wildfires in May and June occur on peatland (Hugelius et al., 2020). As most of the

Boreal forests recover from wildfires, peatland fires are problematic since they do not regrow quickly
after the fire, resulting in a permanent carbon loss to the atmosphere. Due to the thick layers of peat
or other soil rich organic matter, burning through those layers often causes fires to sustain for a long
time. Although, peatlands helped to cool the climate for thousands of years by storing carbon as they
accumulate, they might probably become a net carbon source by the end of the century (Hugelius
et al., 2020).
As larch forests are the dominant forest communities in the Siberian Taiga, the majority (>50%) of

wildfires were observed in larch stands (Ponomarev et al., 2016). Due to their low crown closure, the
main fuel source are not the trees themselves but lichen and moss, spreading surface fires (Sapozhnikov
and Krechetov., 1982). Shrub extent increases in the Tundra due to climate change and may be
enhanced due to wildfires (Hollingsworth et al., 2021). The increase in lichen and moss matrix and
decrease in forest causes an increase in mean burned area up to the Arctic circle. The burned area
provides perfect environmental conditions for larch, as it is extremely shade-intolerant and regenerates
poorly under a closed canopy. This way wildfires contribute to the occurrence of larch, which is why
they are considered as pyrophytic species. But the impacts of wildfrire vary due to the prevailing forest
type for other global permafrost regions.

1.3.1. Relation to permafrost

For the development of permafrost, the Taiga itself is an important contributing factor. The intact
forest canopy, summer months insulating moss cover and storage of forest litter leads to a cooling of
the underlaying soil. The thickness of organic layer has a key influence on permafrost and vegetation
changes.
Due to the dark ash from the bun out of ground cover, the surface albedo significantly reduces,

resulting in an alteration of the division of energy sources and the net heat balance on the ground for
several years. This in turn leads to ground warming, as the absorption of shortwave radiation increases
and will be transferred into sensible heat (Ponomarev et al., 2020). Additionally, the increase of
emitted longwave radiation strongly supports the increase in land surface temperature. Furthermore,
the lack of an intact vegetation cover produces a deeper and more efficient insulating layer of snow
stack during winter.
Recent studies show a typical pattern of permafrost recovery after wildfires (Figure 1.3). Permafrost

seems to have been stable after fires in most areas, with short-term changes immediately after the
fire, returning to pre-fire conditions within a few decades (Rocha et al., 2012). This can be related to
vegetation succession (Heim et al., 2021). The impact of wildfires on permafrost and recovery is very
complex, depending on the landscape position, organic layer thickness, soil type, burn severity, snow,
drainage – and soil moisture conditions, pre-fire permafrost and vegetation conditions. To mention
an example, fires on a dry high area with coarse soil will be more vulnerable than a poorly drained
lowland, high vegetated area.
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Figure 1.3.: Tundra post-wildfire effects on the soil temperature, ALT and permafrost based on Heim et al. (2021).

1.4. Objectives

The aim of this work is to study the relation between post-fire LST and permafrost in Siberia, regarding
a south-northward transect from Taiga to Tundra.
Therefore, the following objectives have been set:

1. Remote-sensing based assessment of post-fire changes in LST

2. to analyze the relationship between LST and BS (NBR, dNBR) to determine the vegetation
recovery rate

3. to visualize the temporal thermal state (GST) and ALT of permafrost

4. to evaluate the relationship between LST and permafrost parameters (GST/ALT)
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2. Study area and data acquisition

2.1. Study area

The study area is located around the Yana River basin, between 65° to 71°N and 131° to 141°E in the
Sakha Republic (northeastern Siberia, Figure 2.1). The river is 872 km long and the catchment covers
an area of 238.000 km², crossing two of the world biomes – Taiga and Tundra. Topographically, the
study area is enclosed by the Chersky Range in the south/ south-east, the Verkhoyansk Mountains
as part of the East-Siberian Mountains in the west/ south-west, the Laptev sea in the north and
East-Siberian Lowlands in the east. The entire area is characterized by continuous permafrost.
To study the effects of wildfires depending on the latitude, fire scars were selected in a south-north
transect. The transect begins 150 km south of Batagay (67°39´30˝N, 134°38´40˝E) as the origin of
consideration, to 420 km north of it along the western and eastern banks of the Yana River. Al
together, 9 wildfires matching the criteria of showing the longest possible time series (6-11 years) after
the fire, were observed during 2006 to 2020 (Table 2.1). They vary clearly in size between 8 km² to
243 km² and elevation from ca. 300-950 m of the southernmost fire scar and ca. 10-60 m to the north.
As Tundra fires are rather unusual until now, just one fire could be included in the study.

Figure 2.1.: Study area including the selected wildfires.
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fire biome year of fire size [km2] elevation [m] landcover
1 Taiga 2009 60 301-949 90,110,120,150
2 Taiga 2014 31 276-401 90,110,120,150
3 Taiga 2014 62 162-738 90,110,120,150
4 Taiga 2009 243 147-703 90,110,120,150
5 Taiga 2009 22 95-409 90,110,120,150
6 Taiga 2009 50 351-631 110,120,150,200
7 Taiga 2010 14 74-302 150
8 Taiga 2014 8 58-114 110,120,150
9 Tundra 2013 11 58-85 150

Table 2.1.: List of studied wildfires and their characteristics. The landcover classes are subdivided in 90: Open
needleleaved deciduous or evergreen forest; 110: Mosaic Forest-Shrubland/Grassland; 120: Mosaic
Grassland/Forest-Shrubland; 150: sparse vegetation; 200: Bare areas (GLOB Cover 2009 Land Cover
Map).

As the study area is subdivided into Taiga and Tundra, their characteristics are explained separately.
The Taiga climate (subarctic climate) is milder than tundra climate and moist enough to promote
significant vegetation growth, but too cold for rich tree extension. It is characterized by sharply
seasonal patterns with extremely cold and long winters, whereas summers are moderately hot and
short. In the selected study area, the average temperatures in January are ~ - 40°C and ~ 15°C
in July. Temperatures being above average in Siberia, even a temperature of 38°C was recorded in
Verkhoyansk on 20 June 2020 (WMO). Calculated linear trends for the period of 1966 to 2016 range
from 0.4 to 0.5°C/ 10 years (Gorokhov and Fedorov, 2018). The precipitation is relatively low, ranging
from 150 – 200 mm/year in the lowlands and 400 - 500 mm/year in the mountains. The precipitation
tends to increase by 0 to 4 mm/10 years for the southern most parts and decrease the more north by
-4 to 0 mm/10 years from 1966-2016 (Gorokhov and Fedorov, 2018). The Taiga vegetation consists of
coniferous forests with dominant trees such as larch and silver birch, while Siberian dwarf and lichen
are common on the ground.
The Tundra is known for its cold and desert-like conditions, receiving low amounts of precipitation

ranging from 150 to 250 mm/year (melting snow included). Here, the precipitation shows even higher
negative trends by -8 to -4 mm/ 10years (Gorokhov and Fedorov, 2018). Due to the influence of both
continental and ocean processes, the climate of the area is defined as a humid continental climate –
cool summer subtype (Koppen classification Dfc). Winters are very long, dark and cold with mean
temperatures below 0°C for six to 10 months. The average winter temperatures are ~ −32 to −40°C.
Therefore, summers are short and cool with mean temperatures ~ +4 to +12°C, enabling the ecological
zone to sustain. Here, the trend is the same as for the Taiga with 0.4 to 0.5°C/ 10 years (Gorokhov
and Fedorov, 2018). Therefore, the growing season with ground permafrost thawing allows plants to
grow and reproduce during a very short period of 50 to 60 days. The Tundra is also very windy, with
winds blowing between 30 to 60 miles per hour. As the water cannot drain through the permafrost
during summer, the Tundra is characterized by small lakes and marshes. Dominant vegetation contains
dwarf shrubs, grasses, mosses, sedges, and lichens, while few isolated strands of larch taiga grow in the
southern Tundra.
Continuous permafrost in the Yana River valley shows a mean annual ground temperature between
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-5.5 °C to -8.0 °C at the bottom of the active layer. The ALT varies for forest/moss covered sites
between 20 – 40 cm and for open sites between 40 – 120 cm, respectively (Murton et al., 2017).

2.2. Data

2.2.1. Landsat imagery

The entire Landsat image archive (Thematic Mapper (TM), Enhanced Thematic Mapper+ (ETM+)
and Observing Land Imager (OLI) sensors) has been included in this study, using both Landsat Top-
of-Atmosphere (TOA) reflectance, as well as surface reflectance (SR) data at a map projection WGS84
UTM 53N. The accessibility of steady data for over three decades permits long-term analysis. For the
study area, reliable Landsat data was available since 2006, leading to a full time series span of 14 years.
Another advantage is given by its spatial resolution of 30 m and largely similar spectral characteristics,
compared to other Sensors like MODIS with only 250 m resolution. Therefore, the repetition rate of
MODIS/ Sentinel (daily/8-days) is much higher than it is for Landsat (16-days). Many approaches,
capturing hemispheric scale pattern at coarser spatial resolution for change detection have been tested
(Beck and Goetz, 2011; Goetz et al., 2010; Stow et al., 2004). Landsat provides LST estimates at a high
spatial resolution, which is of advantage to cover local and small-scale areas. Capturing rather small-
scales would reduce the uncertainty, as small-scale processes would not remain unnoticed. Due to the
selection criteria, the fire areas analyzed in this study are rather small in extent, which reinforced the
selection of Landsat data. A precise description of the fire areas is necessary to improve the analysis.
For the analysis, only the common bands (blue, green, red, near-infrared / NIR, short-wave-infrared-

1 and -2 / SWIR1 and SWIR2) were used. The entire image collection was filtered to acquisition dates
of the Arctic summer months (June 1st – August 30th ) in order to minimize variations caused by
phenology and to enhance the comparability to other Landsat based trend analysis due to the same
acquisition dates (Fraser et al., 2014). Additionally, the summer months exhibit less cloud coverage
than other seasons, resulting in a more complete consistent data basis. To minimize the domination
of confounding elements (such as clouds, shadows), the maximum cloud coverage was set to 80 %.
Overall, for all fires, 120 TM, 729 ETM+ and 490 OLI images (1339 altogether) fulfilled the above-
listed criteria for a data range from 02-06-2006 to 31-08-2021. Data availability over time shows
spatio-temporal variation and is generally inconsistent (Figure 2.2). The amount of image tiles over
time including the entire study area varies between a minimum of 36 images in 2006 and steadily
increases over time, leading to a maximum of 140 images in 2018, due to the launch of OLI in 2013 and
its overlap with ETM+. Likewise, the spatial distribution shows an inhomogeneous pattern, exhibiting
246 images for the most northern fire, ~ 465 images for the most southern fire, and ~ 377 images for
the area in between. Due to the high latitude, large overlapping areas of image acquisition paths
occur, resulting in a higher frequency (Figure 2.2). As can be seen in Figure 2.2, considerable image
overlapping can be found for most of the fire regions. Nevertheless, the potential high acquisition
frequency is reduced by cloudiness, short snow-free season, remoteness from receiving stations, and the
deficiency of archived TM data (Goward et al., 2006).
Landsat data were accessed and pre-processed via the cloud-based Google Earth Engine (GEE)
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platform. The GEE provides a complete list of freely available remote sensing products and can
quickly process the requested products online through parallelization, enabling effective, time-saving
large-scale geo-spatial studies.

(a) Pixel-based cloud free
Landsat observations.

(b) Number of images per acquisition month.

(c) Number of images per acquisition year.

Figure 2.2.: Overview of available Landsat images for the entire study site over the time period from 2006 to 2020.

2.2.2. Auxiliary data

The following non-permafrost related products were not used for statistical analysis but shall give a
first impression providing background knowledge concerning the study site.
As the fire impact and regeneration is influenced by factors like elevation and land cover type,

classification of the initial state of the fire area before the fire is required. Therefore, the Digital
Elevation Model (DEM) obtained from the Shuttle Radar Topography Mission (SRTM) at a resolution
of 30 m was added to the data set, which is available from the GEE archive. To describe land
cover types, the GlobCover 2009 (Global Land Cover Map) was used. It is produced by an automated
classification of MERIS FR time series in 300 m resolution. Additionally, the Hansen-Tree canopy cover
for the year 2000 (treecover2000) Landsat-based product was employed, to describe the occurrence
of forests at a smaller 30 m scale. To verify the performance of the later used LandTrendr (LT)
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algorithm for detecting fire disturbances, the FireCCI51: MODIS Fire_cci Burned Area Pixel product
(version 5.1) from the GEE was consulted. It provides monthly global ~250 m spatial resolution data,
containing information on the burn date in Julian days. Unfortunately, in situ data observation on
permafrost conditions are extremely rare in general. Hence, data from the ESA Permafrost Climate
Change Initiative (Permafrost_CCI) of the CEDA archive were employed. These data sets were
derived from thermal models constrained by satellite data. The initiative offers ALT and ground
temperature products, covering the mean for the entire Julian years form the period 1997–2018 at a
spatial resolution of 926 km. The satellite data was given by downscaled ERA5 reanalysis near-surface
air temperature data (1997-2002) and MODIS land surface temperature (2003-2018). The ground
temperature is provided for various depths, including the GST, 1 m, 2 m, 5 m, and 10 m. As most
prominent impacts occur on the upper soil layers, only the GST data set has been considered for
further analysis.
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The processing chain (Figure 3.1) applied in this study includes four main steps: 1.) pre-processing
of Landsat imagery, 2.) multispectral index calculation, 3.) fire area detection together with LST
calculation, and 4.) statistical analysis.

Figure 3.1.: Processing chain divided into data basis, including pre-processing, index calculation, as well as fire area
detection and LST calculation, together with the statistical analysis as second part.

3.1. Pre-processing

Pre-processing includes data acquisition via GEE for the filter set by acquisition period, acquisition
months, and cloud coverage. Imagery is given as raw digital numbers (DN), incorporating the scaled ra-
diance, surface reflectance (SR) and calibrated Top-of-Atmosphere (TOA) reflectance. The DN rasters
needed to be calibrated radiometrically, as the values are influences by the radiance, reflectance, and
atmospheric conditions. This is achieved by using the ee.Algorithms.Landsat.calibratedRadiance(img)
algorithm in GEE. Firstly, spectral radiance was derived from DNs and based on the result, reflectance
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(both at sensor) was calculated. Afterward atmospheric correction was performed, whereby atmo-
spheric effects due to absorption and scattering were removed. Using the Quality Assessment Band of
the SR product, which was generated from the CFMASK algorithm, all Landsat images were masked
for clouds, cloud shadows, and snow/ice.

3.2. Multispectral index calculation

The Normalized Difference Vegetation Index (NDVI) is a crucial parameter for the subsequent LST
calculation. It was obtained by the SR product, using the reflectance of near-infrared (NIR; 0.76–0.90
µm) and the red spectrum (RED; 0.64–0.67µm) and was calculated as follows:

NDV I =

(
NIR−RED

NIR+RED

)
(3.1)

The NDVI ranges between -1 and 1. The closer the values are to 1, the more vegetation is present.
Therefore, the values 0 and 0.1 - 0.2 represent water and soil, respectively.
To identify fire areas and to measure burn severity (BS), the Normalized Burn Ratio (NBR) was

determined. Since the NBR was mainly developed for BS assessment, some studies argue that the
NBR is not reliable in getting information about an early succession ecosystem reaction (Keeley, 2009;
Lentile et al., 2007). On the other hand, good performance of NBR regarding long-term vegetation
regeneration has been proved, by many other studies (Chen et al., 2011; Epting et al., 2005; Garcia
and Caselles, 1991). Some of them even specify the NBR to be one of the most accurate satellite-
driven indices to monitor post-fire environments (Cohen et al., 2018). Instead of the red band in the
NDVI-formula (Eq 3.1), the short wave infrared band (SWIR, 2.08–2.35µm), which is sensitive to water
content in vegetation and soils (Miller and Thode, 2007) is used. The equation for NBR is:

NBR =

(
NIR− SWIR

NIR+ SWIR

)
(3.2)

Areas devastated by fire show very low reflectance in the NIR and high reflectance in the SWIR
portion of the spectrum, leading to high NBR values (maximum possible NBR=1). The opposite can
be seen for healthy vegetation. Non-burnt areas are usually associated with NBR-values close to zero.
Additionally, the NBR will be used later on to determine whether the changes in LST are related to
the fire event or rather other factors, like seasonality. Furthermore, the NBR is necessary to estimate
and extract the fire areas.
To detect the level of fire severity, the difference Normalized Burn Ratio (dNBR) has been proven

to be a reliable estimator (Epting et al., 2005; Escuin et al., 2008; Veraverbeke et al., 2014) and was
produced in this study for each of the fire areas. It is calculated by the difference between the pre-fire
and post-fire NBR obtained from images. High dNBR values indicate more severe damage, while areas
with low dNBR values indicate less damage or even regrowth. The formula for calculating the dNBR
is shown below:

dNBR = (NBRprefire −NBRpostfire) ∗ 1000 (3.3)
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When it comes to comparisons among fires, it is advisable to incorporate an alternative version
of the BS (dNBRoffset) which accounts for the potential phenological differences between pre- and
post-fire imagery (Miller and Thode, 2007; Parks et al., 2014). The dNBRoffset states the mean
dNBR of unburned pixels 180 m outside the burned perimeter (Key and Benson, 2006). Testing by
Parks et al. (2018) has proven the 180 m distance threshold to produce reliable results, quantifying
the dNBR differences between unburned pixels in the Arctic environment. It is necessary, that the
vegetation in the fire area and 180 m buffer are similar to provide appropriate results, which was
considered for each wildfire. Finally, the subtraction of the fire-specific dNBRoffset from each dNBR
raster gives the requested dNBRoffset (Key and Benson, 2006). With the given dates of each fire,
the designed code use imagery from one year before and one year after each fire event. To minimize
uncertainties, the knowledge of the exact time is crucial. The output was classified referring to the BS
classes and thresholds proposed by Key and Benson (2006) shown in the following table (Table 3.1).
As these threshold values were applied to forested landscapes in the north-western US, they have been
considered more reliable than other identified thresholds to define the severity classes.

Severity level dNBR Range (scaled by 103)
Low Severity 100 to 269

Moderate-low Severity 270 to 439
Miderate-high Severity 440 to 659

High Severity 660 to 1300

Table 3.1.: Burn severity classes by Key and Benson (2006).

Among others, the BS is important to look at, as within each severity class the LST changes re-
spectively. Regarding high severity classes, the LST is the highest with the greatest difference to the
control area. The less the severity, the less the LST differences between fire and control area (Vlassova
et al., 2014).

3.3. Change detection to extract fire areas

Altogether, 9 fire areas including their corresponding unburned control areas, were selected as a basis
for further data extraction and analysis. Several Landsat image time series (LTS) change-detection
techniques exist that have been proven to be robust against spectral differences due to phenology
and topography (Griffiths et al., 2012). For this study, the Landsat-based detection of Trends in
Disturbance and Recovery algorithm (LandTrendr) was selected as a suitable algorithm to detect fire
disturbances associated with vegetation loss (Kennedy et al., 2010). LandTrendr (LT) has been ported
to the GEE platform, stating a new version LT-GEE, which provides full access to the Landsat archive
and increases the computational speed due to parallel processing (Gorelick et al., 2017). The basic idea
behind the LT algorithm (Figure 3.2) is to monitor both short-term radical and long-term moderate
changes by examining the temporal-spectral trajectory of each pixel from the annual Landsat time
series stacks. The input is given by one spectral band or index, coupled with the date. In this study,
the NBR index has been used as input. As vegetation indices can reduce the impacts of external
factors like atmosphere and topography on the surface reflectance, they have been regarded as more
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reliable variables compared to individual spectral bands (Zhu et al., 2019). When applying the LT
algorithm a set of control parameters needs to be optimized to find the best model for change detection
and to ensure high-quality results. The main parameters (Appendix A Table A1) are the removal of
noise-induced spikes (outliers), identifying vertices (breakpoints), the fitting of trajectories, and setting
the number of segments (Zhu and Woodcock, 2014). The output of the LT algorithm states the year
when changes occurred and the accompanied fire area extent (Figure 3.2). The extent of the fire areas,
which fulfill the selection criteria named above, are exported for further LST time series extraction.

Figure 3.2.: History of Tundra fire (2014) pixels, experiencing a period of relative stability, rapid loss of vegetation due
to wildfire, and subsequent regeneration.

To establish the effect of fires on LST, unburned quadratic control areas have been determined.
Both areas (fire/control) have the same size and are on the same longitude (east/west position of the
adjacent fire area) to reduce uncertainties. The closest distance between fire and control area is 2 km,
to make sure, that the transition zone between fire and control area is excluded from the analysis. A
greater amount of pixel misclassification shall be prevented. For each fire area, the control areas were
chosen individually, whereby homogeneity of land cover and elevation have been considered. Rivers
and thermokast lakes close to fire areas were not included. Additionally, control areas exclude fire
areas as well as future burned areas to not falsify the results in later time series analysis.

3.4. Retrieval of Land surface temperature

The LST has been calculated using the well established SC-algorithm approach by (Jiménez-Muñoz
and Sobrino, 2003). The SC-method can be applied to sensors with just one thermal band such as
Landsat TM and ETM+ and is therefore the best choice in terms of comparability between all three
sensors involved in this study. Moreover, it is straight-forward in its implementation if all necessary
parameters are given (Jiménez-Muñoz and Sobrino, 2003). Nill et al. (2019) applied this algorithm
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in high latitude environments and considered it to be sufficiently accurate. To implement the SC-
algorithm, prior knowledge about the LSE and the state of the atmosphere is essential. Based on an
approximation of Planck‘s law, the effective at-satellite calibrated brightness temperature BTsen can
be obtained for Landsat infrared data, provided by the SR collection:

BTsen =
K2

ln( K1
Lsen

+ 1)
(3.4)

K1 and K2 are band-specific thermal conversion constants given by the metadata. Lsen refers to the
spectral radiance in W/(m2∗sr∗µm), which can be obtained by applying the band-specific rescaling
factors Gain and Offset also provided with the SR collection metadata file to the pixel values (DN)
(Chander et al., 2009).

Lsen = Gain ∗DN +Offset (3.5)

Regarding Planck’s law together with the radiative transfer model, the LST can be retrieved by the
following formula (Jiménez-Muñoz and Sobrino, 2003; Jiménez-Muñoz et al., 2008):

LST = γ

[
1

ε
(ψ1Lsen + ψ2) + ψ3

]
+ δ (3.6)

ε states the surface emissivity, ψ are the atmospheric functions (AFs), γ (Eq 3.7) and δ (Eq 3.8) are
parameters based on Planck‘s law. The latter are defined as follows:

γ =
BTsen2

bγLsen
(3.7)

δ = BTsen −
BTsen2

bγ
(3.8)

BTsen is the brightness temperature and bγ states a sensor-specific constant. It differs from sensor
to sensor, respectively. For Landsat TM the value for bγ is 1256 K, for Landsat ETM+ it is 1277 K
and for TIRS it is 1324 K (Jiménez-Muñoz et al., 2008, 2014). The AFs describe downwelling and
upwelling radiation, same as transmissivity and represent the atmospherical state. Using a second-
degree polynomial fit, they were approximated versus the atmospheric water vapor (WV, Lantz et al.
(2010)):  ψ1

ψ2

ψ3

 =

 c11 c12 c13

c21 c22 c23

c31 c32 c33


 wv2

wv

1

 (3.9)

According to literature (Jiménez-Muñoz et al., 2014; Sobrino et al., 2008), the coefficients shown in
Appendix A Table A2 are best suited for high latitude environments and were used to fill the matrix
(Eq 3.9) in this study. The coefficients cij were retrieved by Nill et al. (2019) applying simulations
by using different atmospheric soundings databases. The outcome shows different coefficients for each
sensor with usually low WV content for high latitudes. The reanalyzed atmospheric WV content was
retrieved via GEE offered by the National Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR). The data has been proven to submit accurate

18



3. Method

results when calculating the LST from Landsat data (Li et al., 2013a; Rosas et al., 2017) and was
provided as the total column water vapor at a global scale for every 6 hours (0:00, 6:00, 12:00, 18:00
UTC) at a resolution of 2.5 arc degrees. For the LST calculation, WV values closest to observation
time of the Landsat image were chosen instead of taking the mean of all four times. To estimate
the LSE for each time step, the Simplified NDVI Threshold Method (SNDVITHM ) was used, as both
parameters show a linear relationship (Sobrino et al., 2008). To implement this method for deriving
pixel emissivity values, certain threshold values for the emissivity and index values for full vegetation
cover (εv and NDVIv) and bare soil (εs and NDVIs) need to be chosen. Based on previous studies, the
NDVIs and NDVIv were chosen to be 0.2 and 0.6, while the emissivity values εs and εv were set to 0.97
and 0.985 (Li et al., 2013a,b; Sobrino et al., 2004; Wang et al., 2015). Furthermore, the emissivity of
NDVI values below zero, representing water bodies, were set to 0.99. The formulas for emissivity are:

ε =


εs

εs + (εv − εs)Pv

εv

NDV I < NDV Is

NDV Is ≤ NDV I ≤ NDV Iv

NDV I > NDV Iv

(3.10)

Pv represents the fraction of vegetation cover (Carlson and Ripley, 1997) and is calculated as follows:

Pv =

(
NDV I −NDV Is
NDV Iv −NDV Is

)2

(3.11)

Finally, the LST was calculated for each scene, using Equation 3.6. For further time series analysis,
the yearly mean LST of all pixels per image was calculated for each fire and control area, as GST
and ALT are only available as yearly means. Certain scenes needed to be corrected for remaining
outliers after cloud and shadow masking with the CFMask algorithm by setting a threshold of 8 °C
(plus pixels with values just above this threshold). Further, the final processing involved mosaicking
the multi-temporal layer stacks to get a continuous image surface across the studied areas.

3.5. Statistical analysis

In order to create the base data set for the statistical analysis, the parameters determined in the
previous chapter were extracted for each fire area and their corresponding control area. The same was
done for the downloaded yearly mean GST and ALT products from the Permafrost_CCI database.
The analysis is subdivided into four parts, beginning with the visual interpretation and comparison
of LST, NBR, GST, ALT time series and dNBR images, together with the Root Mean Squared Error
(RMSE) statistics (such as mean, min, max, standard deviation, and differences between fire and
control area). Time series of fire and control areas were plotted for each fire and differencing has been
implemented. To show the significance, the pairwise t-test was applied. To show whether the LST
differences between fire and control area are rather seasonal related but fire-related, the NBR time
series for each fire has been interpreted. Furthermore, the dNBR gives an insight on the fire severity
and hence recovery rate of each fire and control area. Afterward same is implemented for the GST and
ALT time series, with particular attention to the year the fires occurred. To show if an impact of fire
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occurs at the year of fire for the GST and ALT time series, the residuals have been computed for each
study area. Having regarded the RMSE, the trend analysis defines the next step, regarding trends
before and after the fire event for the study areas. Trend analysis has been applied to LST, GST,
and ALT. Instead of standard least-squares regression, the Theil-Sen (T-S) regression method (Sen,
1968; Theil, 1992) has been implemented, as it is very robust with insensitivity to around 30% outliers
(Fernandes and Leblanc, 2005). Fraser et al. (2014) successfully applied the technique on Landsat time
series analysis in the North American Taiga and Tundra regions for forest change detection.
The Sen‘s slope is the median of paired slope from every point in time to one another and is calculated

by the formula below:

ts−slope = median

∑ n

j = 1

i = 1

(yi − yj)

(ti − tj)

 (3.12)

The intercept is given by:

intercept = median(y)− ts−slope ∗median(t) (3.13)

T-S calculations were carried out in RStudio using the sens.slope( ) function. The intercept was also
calculated in this study but not further included in the analysis.
Finally, in order to quantify the relationship between LST and GST as well as ALT, correlation

analysis was conducted as a final step in the analysis. To calculate the correlation in RStudio, the
Spearman’s rank correlation (cor.test(x, y, method = "spearman")) – a non-parametric test was used
as it is very robust as it bases on ranks (Eq. 3.14). The Spearman correlation coefficient rs describes
the relationship between two variables and ranges from -1 to +1, whereby -1 and 1 represent complete
correlation and 0 means no correlation. Negative values indicate that with the increase of one variable,
the other one decreases. To test the statistical significance, the cor.test() function was used. If p <=
0.05, the result is considered significant and the null hypothesis, stating that there is no correlation
between both variables, can be rejected. If the p-value is > 0.05, the null hypothesis will be accepted.
Before correlating the LST data with GST and ALT, resampling of the LST data needed to be done
beforehand to get more reliable results. The spatial resolution of the permafrost products is 926 m
and for LST as already mentioned above is 30 m. Therefore, LST was resampled to 926 m, giving the
best correlation results. The Spearman’s rank correlation coefficient is calculated as follows:

rs = 1− 6
∑
d2i

n(n2 − 1)
, (3.14)

where n is the number of observations and dithe difference between ranks of the observations.
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4.1. Visual interpretation of time series

Four factors influencing permafrost were evaluated: (1) LST, (2) loss of vegetation coverage and
recovery rate (NBR, dNBR), (3) GST and (4) ALT.

4.1.1. Yearly mean summer LST

To reveal the post-fire response in temporal LST patterns, the yearly summer mean LST during a
15-yr time period from 2006-2020, was evaluated by visual interpretation. The time series (Figure
4.1 and Appendix B Figure B1) display the yearly area-averaged LST plus standard deviation over
the fire and control areas. Regarding the year of fire disturbance for each study site, the time period
varies between 3-8 years before the fire and 6-12 years after the fire event. The approximate time
when the fire started, is indicated by the gray vertical bar in the figures. Additionally, the difference
(dLST) between the fire area and the control is given in the plot below. The entire results part includes
visualizations of three selected study areas (fire1, fire4 and fire9), marking a south-north transect. The
rest are included in the associated Appendix. Therefore, the statistics are shown for all study areas in
the tables below the figures (Table 4.1).
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Figure 4.1.: LST time series, together with dLST. The gray bar marks the year of fire disturbance, while the red and
blue areas mark the standard deviation for the fire and control area, respectively.

Given the times series (Figure 4.1) and the table (Table 4.1) below, the results show that the mean
LSTfire is greatest for fire1 with 25.05°C (min: 19.75°C and max: 29.19°C) and slightly decreases with
increasing latitude to a minimum of 17.50°C (min: 14.62°C and max: 22.91°C) for fire9, including
one exception of fire3 which exhibits lower temperatures with 21.30°C than the fires around. Same
pattern becomes apparent for the mean LSTcontrol were temperatures also decrease from 23.43°C (min:
19.71°C and max: 26.17°C) for fire1 to 17.93°C (min: 13.05°C and max: 23.68°C) for fire9, including the
same exception of fire3 with lower temperatures of 14.96°C. Comparing both, LSTfire and LSTcontrol,
the mean of LSTfire is higher for the fires1−6 and the other way around for fires7−9. A significantly
higher LSTfire than LSTcontrol is given for all fires, except for fires5,7 with p-values of 0.13 and 0.20,
respectively. The standard deviations partly exhibit values of 8°C , mainly for LSTfires and decrease
for LSTcontrol. dLST is low before the fire event, ranging from 0.01°C for fire1 to -1.82°C for fire9.
After the fire, dLST increases up to a minimum of 0.40°C for fire8 and up to a maximum of 3.45°C
for fire3. Regarding the southernmost time series, dLST is the highest for 1-5 years after the fire and
decreases until the end of time series. Therefore, the northernmost areas exhibit a faster decrease of
1-3 years after the fire.
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fire LSTfire [°C] LSTcontrol [°C] p-value dLSTbefore [°C] dLSTafter [°C]
mean min max mean min max

1 25.05 19.75 29.19 23.43 19.71 26.17 0.04 – 1.82 2.05
2 23.80 20.38 28.76 22.50 17.43 26.78 0.05 0.18 2.17
3 21.30 13.69 27.64 19.38 14.96 22.68 0.001 0.65 3.45
4 23.27 18.98 26.34 21.16 17.80 23.36 0.04 -0.79 2.63
5 22.14 17.56 27.59 21.53 16.48 24.85 0.13 0.38 0.78
6 22.39 17.31 26.07 20.69 15.11 24.36 0.0001 0.82 1.86
7 20.46 16.91 24.69 21.00 15.95 25.25 0.208 -0.97 0.47
8 19.71 15.84 26.74 20.02 14.24 26.31 0.028 0.17 0.40
9 17.50 14.62 22.91 17.93 13.05 23.68 0.038 0.01 0.61

Table 4.1.: Summary of LST RMSE statistics, including mean, min and max of the study areas with corresponding
p-values and the mean dLST before and after the fire event.
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4.1.1.1. Yearly mean summer NBR and dNBR

In order to test if the changes in LST are due to fire events rather than other factors, the NBR was
calculated for the fires areas. Figure 4.2 and Appendix B Figure B2 show the yearly mean NBR of fire
pixels and their corresponding control pixels. The area colored in blue between both areas, marks the
recovery rate.
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Figure 4.2.: NBR time series of fire areas, with recovery rate colored as the blue area in between.

All plots show an immediate decrease of NBR for the fire area at the year the fire occurred, proving
the change in LST to be related to a fire event. But they vary in pattern, regarding the change in
latitude. Together with table 4.2, the areas unaffected by fire show mean NBR values between 0.35
(min: -0.16 and max: 0.45) for fire7 to 0.47 (-0.18 to max: 0.51) for fire3 with generally higher values
in the south than in the north. Therefore, the mean for NBRfires are lower, showing a minimum of
0.18 (min: 0.05 to max: 0.44) for fire2 and a maximum of 0.31 (min: -0.01 to 0.45) for fire8. All fires,
except fires5,6 are significant. Before the fire occurred, the differences (dNBR = NBRfire-NBRcontrol)
were close to zero with a minimum of 1.67e-05 for fire8 and a maximum of -0.05 for fire6. Therefore,
post-fire areas increase negatively with a minimum of -0.11 for fire7 and a maximum of -0.39 for fire2.
The difference is regarded as the capability to recover, not just as the impact of fire. Even though, all
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time series experience a clear NBR drop directly after the fire, the recovery rate is remarkably different.
Hence, fires7−9 are revealing a faster regeneration after the initial NBR drop, taking 3-4 years of the
fire pixels to adjust to the control pixels. In contrast, the fires1−6 show rather intermediate behavior
with no to very slow adjustment of fire and control pixels.

fire NBRfire NBRcontrol p-value dNBRbefore dNBRafter

mean min max mean min max

1 0.21 0.01 0.48 0.42 0.36 0.46 4.17e-09 0.04 -0.25
2 0.18 0.05 0.44 0.43 0.30 0.48 3.07e-07 0.03 -0.39
3 0.3 -0.18 0.51 0.47 0.36 0.57 7.45e-05 -0.02 -0.28
4 0.24 0.03 0.49 0.43 0.36 0.52 9.91e-09 -0.01 -0.22
5 0.24 -0.29 0.47 0.44 0.41 0.46 -0.14 -0.02 -0.23
6 0.26 0.03 0.50 0.45 0.39 0.51 -0.15 -0.05 -0.21
7 0.26 -0.16 0.45 0.35 0.33 0.40 -0.04 0.04 -0.11
8 0.31 -0.01 0.45 0.41 0.38 0.45 0.002 1.67e-05 -0.16
9 0.29 -0.01 0.40 0.39 0.33 0.42 0.004 -0.02 -0.12

Table 4.2.: Summary of NBR RMSE statistics, including mean, min and max of the study areas with corresponding
p-values and the mean difference (dNBR) before and after the fire event.

After proving that the changes in LST are related to wildfires, the NBR shall be further used to
calculate the spatio-temporal BS for each wildfire (Figure 4.3). The images are mapped in yellow-purple
color scale. The low dNBR values are represented in yellow, moderate-low in orange, moderate-high in
red and high severity pixels are marked in purple. The spatial pattern of BS is clearly visible, showing
a clear distinction between low and high severity patches. The figure shows that the BS decreases from
south to north. The first three southern most fires show great patches with high severity, while the
next three fires show just a few patches and regarding the last three fires, high severity pattern are
barely visible. On one hand, the images shall illustrate the BS but on the other hand, they shall give
a general impression of the fire appearances.
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(a) Fire1. (b) Fire2. (c) Fire3.

(d) Fire4. (e) Fire5. (f) Fire6.

(g) Fire7. (h) Fire8. (i) Fire8.

Figure 4.3.: Spatio-temporal BS for each wildfire.
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4.1.2. Yearly mean GST

Figure 4.4 and the Appendix B Figure B3 display the yearly mean GST time series for the time period
1997-2018.
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Figure 4.4.: GST time series, together with dGST. The gray bar marks the year of fire disturbance.

The GSTcontrol show mean values between -5.56°C (min: -1.74°C and max: -8°C) for fire6 to -8.14°C
(min: -4.47°C and max: -11.95°C) for fire8, with generally cooler temperatures in the north than in the
south (Table 4.3). Exceptions are formed by fires3,6 with warmer temperatures of -5.73°C and -5.56°C.
Compared to the mean GSTfire, the minimum is given by fire3 with -5.80°C (min: -2.74°C and max:
-7.88°C) and the maximum with -8.16°C (min: -5.22°C and max: -12.28°C) for fire9. Regarding dGST
before and after the fire, all fires, except fire7 with a decrease in temperature from -0.27°C to -0.20°C,
show an increase in temperature. Fire5 (0.09°C to 0.08°C) and fire9 (-0.11°C to -0.1°C) stay almost the
same. Fire2 shows a strong increase from -0.1°C to 0.35°C, but with no significance showing a p-value of
0.22. The other fires show a significant increase in temperature. Generally, the differences are greater
in the south with 0.35°C for fires1,2 than in the north with -0.1°C for fire1, with a few exceptions
for fires3,5,6. Conspicuous are the negative differences for fires3,6,7,9, meaning that temperatures for
GSTcontrol are crossing the temperatures of GSTfire.
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fire GSTfire [°C] GSTcontrol [°C] p-value dGSTbefore [°C] dGSTafter [°C]
mean min max mean min max

1 -6.41 -3.53 -8.68 -6.73 -3.75 -8.92 9.639e-09 0.30 0.35
2 -6.41 -3.53 -8.68 -6.25 -2.97 -8.13 0.2223 -0.10 0.35
3 -5.80 -2.74 -7.88 -5.73 -2.65 -7.84 8.746e-05 -0.07 -0.09
4 -6.53 -2.66 -8.51 -6.78 -8.71 -2.98 4.294e-10 0.23 0.28
5 -6.71 -3.00 -8.92 -6.80 -2.98 -9.00 3.468e-07 0.09 0.08
6 -6.15 -2.55 -8.42 -5.56 -1.74 -8.00 6.942e-14 -0.55 -0.63
7 -7.35 -4.15 -10.95 -7.11 -3.97 -10.54 1.807e-08 -0.27 -0.20
8 -8.03 -4.26 -11.97 -8.14 -4.47 -11.95 7.185e-06 0.10 0.13
9 -8.16 -5.22 -12.28 -8.05 -5.15 -12.14 4.682e-11 -0.11 -0.10

Table 4.3.: Summary of GST RMSE statistics, including mean, min and max of the study areas with corresponding
p-values and the mean difference (dGST) before and after the fire event.
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4.1.2.1. Residual analysis of GST

To prove whether the increasing trend is related to the fire event, residuals were calculated for the
fire and control area shown graphically (Figure 4.5 and Appendix B Figure B. 4), as well as in table
(Appendix B Table B1). In most cases, the residuals show higher values for GSTfire than for GSTcontrol
at the year of fire disturbance. Fire2 shows no crossing of the control residuals by the fire residuals at or
after the fire event. For the fires3,4, a crossing is visible one year after the fire occurred. Conspicuous is
the decrease of consecutive years with fire residuals greater than control residuals after the fire occurred.
For the first fire, the residuals are higher for GSTfire until five years after the fire. Subsequent, fires3,4
show higher residuals for three years and are getting less until one to two years for the last three fires
in the north. The residuals will only be used to determine the relation of GST to the fire event and
will not be further analyzed.
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Figure 4.5.: GST residuals over the time period from 1997-2018.
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4.1.3. Yearly mean ALT

The following Figure 4.6 and the Appendix B: Figure B5 show the yearly mean ALT from 1997-2018.
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Figure 4.6.: ALT time series, together with dALT. The gray bar marks the year of fire disturbance.

Regarding the time series together with table 4.4, the ALTcontrol show mean values between 0.51m
(min: 0.38m and max: 0.63m) for fire9 and 0.73m (min 0.58m and 0.84m) for fire2. For ALTfire, the
minimum ALT is 0.51m (min: 0.39m and max: 0.62m) for fire9 and the maximum is 0.72m (min:
0.55m and max: 0.84m) for fire2. The mean ALT thins within increasing latitude for both fire and
control areas with exceptions for fires2,5 for ALTfire and fires2,4 for ALTcontrol. Comparing both, the
means are greater for ALTfire for fires4,5,7, smaller than control area for the fires2,6 and equal for most
of the fires1,3,8,9. The fires1,3,8,9 do not show a significance. In most cases (fires1,3,8,9), low changes
occur with dALT between 0.0002m (fire3) and 0.005 (fire8), showing also no significance. A maximum
dALT is shown for fire4 with 0.05m. A significance is given for fires2,5,6,8. No distinct south-north
trend is apparent.
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fire ALTfire [m] ALTcontrol [m] p-value dALTbefore [m] dALTafter [m]
mean min max mean min max

1 0.67 0.48 0.77 0.67 0.49 0.77 0.2589 -0.003 0.0003
2 0.72 0.55 0.84 0.73 0.58 0.84 8.167e-08 -0.01 -0.005
3 0.65 0.51 0.78 0.65 0.51 0.77 0.9181 -0.0001 0.0002
4 0.64 0.49 0.78 0.60 0.45 0.73 2.2e-16 0.04 0.05
5 0.65 0.49 0.77 0.63 0.48 0.76 1.271e-10 0.01 0.02
6 0.61 0.47 0.74 0.63 0.48 0.78 8.322e-10 -0.015 -0.024
7 0.52 0.37 0.66 0.51 0.36 0.65 2.63e-08 0.011 0.012
8 0.51 0.38 0.64 0.51 0.36 0.65 0.8029 -0.0004 0.005
9 0.51 0.39 0.62 0.51 0.38 0.63 0.07035 -0.001 -0.005

Table 4.4.: Summary of ALT RMSE statistics, including mean, min and max of the study areas with corresponding
p-values and the mean difference (dALT) before and after the fire event.
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4.1.3.1. Residual analysis of ALT

In the following Figure (Figure 4.7 and Appendix B: Figure B7 and Appendix B Table B2), the residuals
are used to show whether the changes in ALT are due to a fire event or other factors. Fires2,3 show
greater residuals with 0.82 and 0.86 for ALTfire and 0.94 and 0.92 for ALTcontrol, respectively. Besides,
all the other fires show greater values for fire areas than control areas at the year of fire (fire8,9) or the
year after (fire1,4,5,6,7). Same as for GST, crossings of fire residuals with control residuals last longer
in time after the fire until 4 years after the fire and gets less within the more north it gets until 1 year.
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(c) ALT residuals of fire9.

Figure 4.7.: ALT residuals over the time period from 1997-2018.

4.2. Trend analysis

4.2.1. Yearly summer mean LST

The following table (Table 4.5) displays the Sen’s slopes ts before and after the fire event, discriminating
between fire and control areas, as well as before and after the fire. Comparing the Sen’s slopes after
the fire event of both, same patterns are visible, excluding fire7. fireafter show a negative slope with
ts = -0.13, while a positive slope with ts = 0.09 was calculated for the controlafter. Apart from that,
fires1,3,4 show negative trends in regard to the slopes of firebefore. Fires2,5,6,8,9 are showing an increase
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in temperature after the fire. The minimal Sen’s slope occurs for fires8,9 with ts = -0.07 and ts = 0.07
respectively. The maximum increase with ts = 1.02 is visible for fire3. Generally, the Sen’s slopes show
a greater increase after the fire for fires in the south than in the north.

fire firebefore fireafter controlbefore controlafter

ts p i ts p i ts p i ts p i

1 2.12 1 17.63 -0.31 0.12 27.37 1.50 1 20.53 -0.07 0.75 24.45
2 -0.07 1 25.23 0.66 0.22 21.20 -0.1 1 26.03 0.91 0.22 19.32
3 1.20 0.26 25.23 1.03 0.23 18.08 1.10 0.23 26.03 1.06 0.55 13.67
4 1.18 1 18.73 -0.31 0.15 27.021 1.70 1 17.63 -0.05 0.72 22.76
5 -2.578 1 22.70 -0.30 0.53 25.64 -3.85 1 24.18 -0.22 0.76 23.36
6 2.99 1 15.42 0.27 0.53 21.57 2.03 1 16.26 0.31 0.35 18.72
7 0.25 1 21.80 -0.13 0.59 21.91 -2.73 1 27.99 0.09 0.59 21.34
8 -4.05 0.08 28.32 -0.07 0.54 21.03 -4.01 0.08 28.33 -0.04 1 21.12
9 -2.19 0.31 23.42 0.07 1 17.38 -3.20 0.31 24.77 0.34 0.13 17.11

Table 4.5.: LST Sen’s slopes before and after the fire event for the fire and control areas, together with p-value and
intercept.

4.2.2. Yearly mean GST

Same trend analysis (Table 4.6) as for LST was done for GST, showing postive slopes for all fires in
the control area with a minimum of ts = 0.25 for fire1 and a maximum of ts = 0.75 for fire3. All
of them show a significant increase, except fire5. Same holds true for the comparison of the slopes
before and after the fire at the control area, resulting in increasing slopes, except for fire1. A clear
south-north pattern as for LST Sen’s slopes is not apparent. Regarding the fire area, slopes increase
after the fire for fires2,3,4,6,7,8,9, meaning a decrease in temperature. Therefore, a cooling occurs for
fire1,5. The minimum slope is ts = 0.30 for the fire1 and maximum ts = 0.81 for fire2. Generally, the
steepest slopes occur for the fire2 (ts = 0.82) and fire3 (ts = 0.74), as well as fire8 (ts = 0.75) and fire9
(ts = 0.59). Additionally, they are steeper for the fire area than control.

fire firebefore fireafter controlbefore controlafter

ts p i ts p i ts p i ts p i

1 0.52 0.001 -7.62 0.30 9.237e-08 -7.61 0.52 0.001 -7.79 0.26 7.653e-08 -7.62
2 -0.005 6.482e-06 -5.92 0.82 9.97e-05 -6.51 -0.01 6.745e-06 -5.87 0.62 8.556e-05 -6.39
3 0.03 1.186e-05 -5.89 0.74 6.296e-05 -6.29 0.02 1.399e-05 -5.79 0.76 5.416e-05 -6.28
4 0.34 0.004 -7.21 0.36 5.813e-08 -7.57 0.31 0.004 -7.50 0.38 4.506e-08 -7.92
5 0.35 0.003 -7.38 0.33 5.843e-08 -7.63 0.34 0.003 -7.48 0.53 0.34 -8.93
6 0.20 0.006 -6.06 0.38 6.769e-08 -7.41 0.20 8.841e-08 -5.49 0.40 0.006 -6.87
7 -0.83 0.004 -4.20 0.32 2.295e-07 -7.65 -0.78 0.004 -4.14 0.28 3.143e-07 -7.16
8 -0.29 1.722e-05 -5.78 0.75 4.273e-05 -8.21 -0.26 1.487e-05 -6.10 0.72 4.485e-05 -8.22
9 -0.33 1.925e-05 -5.66 0.59 2.914e-05 -8.10 -0.33 2.048e-05 -5.54 0.57 3.127e-05 -7.93

Table 4.6.: GST Sen’s slopes before and after the fire event for the fire and control areas, together with p-value and
intercept.
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4.2.3. Yearly mean ALT

Comparing the Sen’s slopes (Table 4.7) for the fire area after the fire at the control and fire area show
the same pattern, resulting in an decrease in thickness for all fires, except fire2,3. The minimum for
the control area is ts = -0.001 for fire8 and the maximum ts = 0.023 for fire3. The minimum for the
fire area is ts = -0.003 for fire7 and the maximum with ts = 0.025 for fire2. For both, the last three
fires display negative slopes, while the others are positive but compared to the condition before, they
shrink. After the fire, for the fire area a significant decrease in ALT is visible for all fires, except fire8,9
with p = 0.18 and p = 0.38 respectively.

fire firebefore fireafter controlbefore controlafter

ts p i ts p i ts p i ts p i

1 0.065 0.132 0.545 0.007 0.001 0.668 0.059 0.135 0.564 0.007 0.001 0.666
2 0.005 0.003 0.691 0.025 0.029 0.700 0.003 0.003 0.717 0.020 0.033 0.719
3 0.006 0.003 0.639 0.024 0.030 0.618 0.006 0.003 0.637 0.023 0.023 0.623
4 0.061 0.129 0.516 0.004 0.001 0.655 0.059 0.124 0.479 0.004 0.001 0.612
5 0.057 0.131 0.531 0.005 0.001 0.650 0.058 0.129 0.515 0.005 0.001 0.635
6 0.060 0.125 0.488 0.005 0.001 0.612 0.063 0.127 0.498 0.009 0.001 0.618
7 0.007 0.054 0.507 -0.003 0.001 0.566 0.008 0.053 0.488 -0.003 0.001 0.553
8 0.007 0.002 0.507 -0.013 0.182 0.701 0.006 0.003 0.521 -0.001 0.026 0.541
9 -0.001 0.378 0.551 -0.022 0.385 0.609 0.003 0.003 0.523 -0.003 0.026 0.545

Table 4.7.: ALT Sen’s slopes before and after the fire event for the fire and control areas, together with p-value and
intercept.

4.3. Correlation analysis

Before correlating the LST data with GST and ALT, resampling of the LST data is needed to get more
reliable results. The spatial resolution of the permafrost products is 926 m and for LST as already
mentioned is 30 m. Therefore, LST was resampled to 926 m, giving the best correlation results.
Calculations have been made only for the fire areas, regarding the yearly means of LST, GST and ALT
(Table 4.8).

fire GST ALT
rs p rs p

1 LST -0.08 0.8 0.49 0.12
2 LST -0.46 0.15 -0.09 0.80
3 LST 0.24 0.48 0.15 0.66
4 LST -0.45 0.48 0.20 0.54
5 LST -0.35 0.30 0.43 0.19
6 LST -0.25 0.45 0.24 0.49
7 LST -0.28 0.42 0.61 0.06
8 LST 0.02 0.98 0.22 0.58
9 LST 0.38 0.31 0.63 0.07

Table 4.8.: Correlation results of yearly mean LST with GST and ALT.
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Regarding the correlation between LST~GST, the spearman correlation coefficient rs is the highest
for the fire2 with rs = -0.46, fire4 with rs = -0.45 and fire5,9 with rs = -0.35 and 0.38, respectively. The
lowest correlation occurs for fire1 with rs = -0.08 and fire8 with rs=0.017. All in all, negative moderate
correlations occur for the fires1−7 with one exception of fire3 and positive moderate correlations for
fire8,9.
Looking at the correlation between LST~ALT, the highest correlation coefficient occurs again for

fire9 with rs = 0.63 and fire7 with rs = 0.61. Fires1,5 are also showing a quite moderate correlation
with rs = 0.49 and rs = 0 .43 respectively. Fire2 shows the lowest correlation with rs = 0.09. All
results, for both GST and ALT are insignificant.
Negative correlation for LST~GST means an increase in LST results in a decrease of GST (meaning

cooler temperatures), while a positive correlation means that with increasing LST the GST increases
as well resulting in warmer ground temperatures. This holds true for the fires3,8,9. For ALT, the
positive correlation means with an increase in LST, the ALT increases. A negative correlation would
lead to a decrease in ALT within increase of LST. This holds true for fire2, the others all show positive
correlations.
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5.1. LST

The Landsat LST used in this analysis has a spatial resolution of 30 m and was processed by using the
SC-algorithm in the GEE (Jiménez-Muñoz and Sobrino, 2003; Sobrino et al., 2004), including products
on the column water vapor (NCEP/NCAR). Even though, no ground-truth data as absolute referencing
of LST products existed, plausible remote estimation of LST has been gained in previous studies
applying the algorithm (Nill et al., 2019). Nevertheless, LST is very sensitive to short-term changes
of insolation and air temperature, causing rapidly changing insolation rates and surface warming (Nill
et al., 2019). Additionally, uncertainties evolve concerning permafrost ground properties, which are
highly heterogeneous in space and time and influence the heat fluxes. Furthermore, investigating
Landsat-based LST development is restricted to summer months, due to cloud and snow coverage also
influencing the total amount of LST data per year. Therefore, lack of LST data, particularly from 2006
to 2010 causes uncertainties in time series. High temperatures already occur before the fire event as a
consequence of one value for the entire year. For example, fire2 shows one value as highest temperature
of 28.76°C in 2006. Regarding the slopes, this results in an overestimation before the fire. Therefore,
for the year 2010, many time series show very low values with 13.69°C for fire3. This is also a result
of fewer data per year. Consequently, the comparison between values before and after the fire should
be regarded carefully. Disregarding the year of fire occurrence, some time series show great outliers,
like fire2 with the highest LST of 27°C in 2018. Besides the lack of data, this might be due to the
warmest decades on record from 2011 – 2020 (WMO). As the strong increase in temperature is seen in
both time series, fire and control, the impact of climate warming is prevalent. The standard deviation
is quite high with 8°C, especially for the fire areas than control areas, and are highest around the fire
year. Among others, this could be due to the misclassification of active burned pixels. Differences in
LST may be partly caused by active fires, as flagged as invalid LST values in quality control, rather
than post-fire effects. Even though the pixel size is quite accurate, pixels may cover mixing surface
conditions of burned and unburned pixels mostly around the fire perimeter. Uncertainties due to pixel
misclassification may also have evolved using the LandTrendr algorithm to detect fire areas. The LT
algorithm has a low ability to detect low severity burned areas (Quintero et al., 2019), probably due
to the phenological cycle and sun-angle. Another reason might be the complexity of the LT, including
many control parameters adjusted to the predominant ecosystem type. Hence, a strong sensitivity to
incorrect calibration is assumed (Quintero et al., 2019). Nevertheless, when studying the variations
of post-fire regeneration of vegetation, the LT algorithm develops solid change metrics like year and
duration (Quintero et al., 2019).
Regarding the year of disturbance and post-fire development of LST for the study areas, changes in
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LST are visible but vary in magnitude. Taiga has a stronger LST response than Tundra, as greater
differences after the fire for southern regions with 2.05°C (fire1) than northern regions with 0.61°C
(fire9) occur, regardless length of time series. Tundra fires lead to a slight difference of fire and control
area in LST 1 year after the fire, with a relatively fast alignment of 1 to 3 years, leading to an exceedance
of LSTcontrol in reference to LSTfire. Taiga wildfires have a warming effect on annual LST 1 year after
the fire and result in an overall increasing trend in LST within the years after the fire. It takes 3 to
5 years to align to LSTcontrol, but never reaches the same LST as for the control area at the end of
the time series plot. Confirming the results, the warming effects 1 year after the wildfire have also
been observed in several previous studies for other boreal forest permafrost regions (Oris et al., 2014;
Randerson et al., 2006).
Regardless of the slopes before the fire due to uncertainties, both fire and control areas after the fire

show the same pattern but with different intensities. They are generally higher for the fire area than
the control area. Positive LST trends at the fire area are mainly seen for fires occurring in 2014 with
exception of fire6 also exhibiting a positive slope with ts = 0.27, but occurred in 2010. Fire8 occurred
in 2014, but shows a negative slope with ts = -0.07. As fires in 2014 are not very well recovered yet
due to the short time period of 6 years, the short-term warming trend after the fire is just visible.
Fire6 has a very slow recovery rate, which might be the cause of the prevalent warming trend after
10 years. Fire8 shows a cooling effect, even though it occurred in 2014. This might be due to data
uncertainties or other driving factors which are not included in this study. Otherwise, negative cooling
trends are visible for fires occurring in 2009, probably due to the longer time for recovery. The steepness
of slopes after the fire is greater in the south than in the north, due to greater changes in LST. On
one hand, variances in fire occurrence (2009 and 2014) make it difficult to compare the areas and to
make statements on the long-term effects of fires in 2014. On the other hand, the distinction between
short-term warming effects (1-6 years) and long-term cooling effects (6-11 years) is pronounced.
As algorithmic model corrections are based on real sample data, improvements could be achieved by

the combination of real-time monitoring images (like on-site monitoring or drone aerial surveys) with
the already used historical remote sensing image. For comparison, Hu and Hu (2020) suggest the usage
of more high-resolution, historical images for real sample selection, like QuickBird, Worldview, Pleiades,
and other images. Additionally, downsampling of MODIS data with a higher temporal resolution seems
to show promising results for mapping wildfires and burn severity (Kolden and Rogan, 2013).

5.1.1. NBR and dNBR

Compared to standard approaches for calculating the burn severity, were only one pre- and post-
fire scene are used, the approach by Parks et al. (2018), which was applied in this study, uses a
mean composite fire severity dataset. Hence, the greater validation statistics are leading to higher
classification accuracies for most of the severity classes (Parks et al., 2018). Because of the compositing
method, fire-induced ecological changes can be recorded more accurately as this method is less biased
by pre-and post-fire scene mismatch. Additionally, the low severity burn should be treated with
special care, as predominantly small changes in vegetation may be detected as such. The chances of
misclassification increases if the composited image collection includes a long time period or when the
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distances between these periods gets to expanded. Therefore, it is crucial to know the exact time
period of the wildfire as possible, before proceeding with the analysis. Regarding this information, an
appropriate time window was designated to minimize the errors. (Kolden and Rogan, 2013) mentioned,
that the image compositing, including the period one year after the fire, may not be suitable for all
ecosystems. He argues that for the Arctic Tundra it may be better to use images derived directly after
the fire/ snowmelt but before green-up the year after the fire. This was tested for fires7−9, showing
more high severity burn patches. But due to the short time period, no to very few images lead to the
result, which leads to the beginning where one pre-and post-fire image causes uncertainties in results.
Therefore, it could be possible that the BS was underestimated for fires7−9 , but due to the fewer
amount of images, this method was rejected.
The NBR was used to determine whether the post-fire LST changes can be related to fire events

and not other factors, which was confirmed for all fires. As the changes in LST are closely related
to the prevailing vegetation type, burn severity, and hence recovery rate, the NBR and dNBR were
additionally used as supporting data. In this study, the focus was on the recovery period for NBR and
not NDVI. This has to be kept in mind when talking about vegetation recovery, as they both show
different periods of generally 7-10 years for NDVI and even longer with 15-20 years for NBR until they
return to pre-fire state (Shvetsov et al., 2019).
The NBR shows a direct decrease of surface vegetation after the wildfire event for all study sites,

but the manifestation of the regeneration process is diverse. It ranges from a fast regrowth for the
northernmost wildfires with a mean dNBR after the fire of -0.12 (fire9), to intermediate regrowth for
the more southernmost fires with 0.25 (fire1). Outliers occur though. Fire2 shows the highest dNBR
with – 0.39 and fire7 the lowest with -0.11. Hence, the fires in the south have experienced a more
severe burn, than fires in the north.
This may be explained by the change in vegetation type from Larch forests to shrubland and burn

severity, as driving factors of boreal forest restoration capacity and ecosystem resilience. Field studies
also verified that herbaceous and shrub species growth was especially subject to an increase in NBR
(Bright et al., 2019). This would explain the fast recovery of the Tundra fire areas, without reaching
the control area for the studied time period. If the BS is low, as it is for the northernmost wildfires,
vegetation can quickly recover to pre-fire states (Li et al., 2004). But even severe burns could have
caused a faster recovery in the north, as it states preferable recovery conditions for shrubs and grasses
(Chu et al., 2017) further intensifying Tundra shrubification (expansion of shrubs) and vegetation
composition shifts (Sizov et al., 2021). On the positive side, this shift could lead to the enhancement
of carbon sink (Kalliokoski et al., 2019). Overall, detailed comprehensive long-term satellite remote
sensing data is of great importance and need. Therefore, the intermediate recovery of the southernmost
wildfires may be a result of the high burn severity together with the existence of Larch trees. They
recover best in sites of moderate burn severity, but not severe burn (Chu et al., 2017).
The main advantage of the burn severity analysis is given by the composite of the instantaneous

wildfire impact and the regrowth of vegetation. As it is a change detection process, it is also possible
that changes in the environment, which are not fire-related, may be mistakenly detected as wildfire
damage. Non-fire-related changes could be changes in natural vegetation, other land cover changes,
and deforestation. Even though, snow, clouds, and shadow masking have been applied in the pre-
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processing steps, masking algorithms sometimes still fail to remove all instances. For example, it is
possible that shadows will not be caught entirely, leading to false detection afterward as dark shadow
pixels can be assumed to be burned pixels or enhanced regrowth.
More studies are required around the northern permafrost landscapes, especially Tundra ecosystems,

to get a deeper understanding of links between ecosystem processes and fire impacts. As fires are about
to spread to the Tundra ecosystem in the past years, it is rather difficult to get long time series from
remote sensing data. Additionally, the amount of Tundra wildfires to study on is small, leading to
a comparison of one Tundra wildfire against 8 Taiga wildfires in this study. More wildfires including
longer time series are necessary, to make more reliable future predictions.

5.2. GST and correlation with LST

The analysis of the coherence between GST and LST was impaired by uncertainties caused by the
data basis. Permafrost data was just available as an entire yearly mean at a very coarse spatial
resolution. Therefore, Landsat LST data was present with a high spatial resolution but just means
of the summer months. To at least reduce the uncertainties due to the disparity of pixel sizes, the
LST data were resampled for correlation, leading to better results. But still, due to different time
periods, it is difficult to compare the datasets gaining absolute values and therefore reliable results.
Even though, the correlation analysis fraught with uncertainties, conclusions on the coherences could
be drawn comparing the trends and statistics of GST and ALT time series with LST time series. Based
on the residuals, all visible changes in GST and ALT are related to the fire event, except fire2 shows
the contrary. As already mentioned, permafrost data is highly heterogeneous and as the resolution
is very coarse, the contrast between fire and control could be diluted, causing an underestimation of
means. Therefore, the choice of the control area could have caused uncertainties. As LST changes are
also proofed to be fire-related by NBR, they can be compared with GST and ALT.
The times series, as well as the corresponding statistics, show that in generally differences after the

fire are higher for the southernmost fires with 0.35°C (fire1) and lower to the northernmost with -0.1°C
(fire9), with again a few exceptions given by fires3,5,6, probably caused by permafrost heterogeneity.
As time series for GST and ALT are longer and more consistent, slopes before the fire are more reliable
than for LST.
For the control area, the slopes are all positive after the wildfire, possibly in relation to climate

warming in the Arctic. Fire1 shows an exception with a cooling effect, comparing Sen’s slopes before
and after the wildfire. As it is the southernmost area, possibly the great vegetation cover and occurrence
of trees causes a shading effect. Therefore, the fire areas show slight changes in slope. Firstly, fires1,5
are showing a decreasing slope compared to the slopes before the fire, while all others increase. This
means they show a cooling effect after the fire, instead of warming. GST is dependent on the surface
organic layer, which controls the hydrological and thermal regimes closely with permafrost dynamics
(Jin et al., 2008). Therefore, the decrease in fire1 from 0.51°C to 0.30°C could be due to the long time
period. As the fire occurred in 2009, the time of recovery is longer than for fires, which occurred in
2014. Within vegetation recovery over 11 years, might have caused the GST to get cooler again. The
slight decreasing slope of fire5 from 0.34°C before the fire and 0.32°C after the fire may also be a result
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of time since fire. The change in the degree of slope between fires1,5 may be caused by latitude changes.
Slopes in the north (0.75°C for fire8 and 0.59°C for fire9) and south (0.81°C for fire2 and 0.73°C for
fire3) are the highest. In the north probably due to the time since fire, which is a result of the strong
increase. But as the control shows a nearly same pattern with less difference after the fire, gives reason
to the assumption that climate warming could be a greater influence than in the south due to canopy.
Time series show a great increase in GST since 2015 for most of the time series, which might be due to
climate warming and could also influence the slope. Additionally, fires in the south have experienced
a more severe burn, which might be the cause of the high value of 0.81°C. Comparing Sen’s slopes
of 2009/2010 wildfires, they are less steep than 2014, but slightly increase from south to north from
0.30 (fire1) to 0.38 (fire6). Even though the impact of fire on LST due to greater BS is higher in the
south than in the north, the impact on GST seems to be slightly greater in the north than in the south
regarding the slopes, even ranging from a negative trend before the fire to a positive trend after the
fire. The comparison of 2014 fires occurring in the south (ts = 0.73 for fire3) and north (ts = 0.75
for fire8) shows almost the same value, even though the BS is higher in the south. As wildfires are
predicted to be larger and more severe under a warmer future climate, this could cause great negative
effects especially for permafrost in the Tundra.
Even though time series of GST and LST generally show a good positive consensus, the correlation
analysis offers rather moderate correlation coefficients. Correlation results show a moderate positive
correlation for fire9 with p = 0.39 and fire3 with rs = 0.24, meaning an increase in LST increases GST,
causing a warmer soil surface. This can be mainly seen for fires occurring in 2014, except fire2 with rs
= -0.46. All other fires show a moderate negative correlation, meaning an increase in LST leads to a
decrease in GST. The best correlation is given by fire4 with rs = 0.45. As it is the fire area with the
greatest extent of 243 km², calculated means from coarse GST pixels may have lead to more reliable
results than for smaller fires. The correlation might increase though if longer averaging intervals (5-yr
means) and longer times series will be present. Especially, the LST data for the non-summer months
are needed to include inter-annual variability in the snow cover depth and duration.
Another way to improve the results would be the acquisition of more reliable permafrost data (in-situ

or better resolution remote sensing data). Additionally, to solve the problem of temporal resolution,
including MODIS data could be an option, especially when analyzing fire-affected areas with a greater
extent than chosen fires in this study. Studies show a good agreement of MODIS-LST with ground
surface temperature (Li et al., 2019). Even though in all plots effects of fire can be observed, some
of them show warmer temperatures for the control area than for the fire. This might be due to the
high spatial variability of permafrost ground temperatures. Therefore, the choice of the associated
control areas might be reconsidered or a pixel-based regeneration index using time series similarity by
Lhermitte et al. (2010) could be applied. The advantage of this approach is, that no reference maps are
needed, minimizing the effect of spatial heterogeneity and noise. Despite limitations being prevalent,
correlations between LST~GST and LST~ALT could have been improved by resampling LST data,
showing moderate results.

40



5. Discussion

5.3. ALT and correlation with LST

Changes in ALT times series after the fire are very low in magnitude. Hence, minimum changes
regarding the mean dALT after the fire were observed for fire3 with 0.0002 m and maximum changes
are visible for fire4 with 0.05 m. Uncertainties evolved for fires4,5 with generally greater ALT for the
fire area over the entire time period and for fires2,6 with generally greater ALT for the control area
over the entire time period. This may be due to the coarse spatial resolution as well as the strong
heterogeneity of ALT. Hence, the control area may not be suitable. dALT shows the lowest values in
the south with 0.0002 m (fire3) and 0.0003 m (fire1), even though the BS was the highest. Both show
different processes in time series, resulting in a direct increase of ALT for fire1 after the fire lasting
for 4 years and adjusts over time within recovery. Therefore, fire3 and also fire2 display slight impacts
on ALT only 4 years after the fire, with the ending of time series. Both scenarios might explain the
low changes in ALT. Additionally, the organic layer (thermal conductivity and soil moisture) is the
most important factor controlling ALT. If the organic layer is thick enough, which might be more
predominant in the south due to higher vegetation intensity, it may not always affect the underlying
permafrost. For example, Yoshikawa et al. (2002) suggest that if 7-12 cm of the organic layer in Alaskan
boreal forests remains after a wildfire, the thermal impact on the permafrost becomes hardly apparent.
Therefore, the fire severity is crucial for the post-fire ALT variation Li et al. (2021), influencing the
organic layer thickness.
Fires4,5,6 show the greatest dALT after the fire ranging from 0.02 m to 0.05 m. But they are also

fraught with uncertainties. Apart from that, all of them display a slight increase of ALT directly after
the fire for 1-2 years and slowly adjust to ALTcontrol. Fires4,6 though, show another increase beginning
in 2014, 4-5 years later. The same is visible for fires2,3. The long time period after the fires and the
increase nearly at the end of the time series might have caused the highest dALT values. Additionally,
fires4,6 show the same pattern in NBR and dNBR with high burn severity and low recovery rates, which
could have also caused an impact on the organic layer, resulting in an ALT increase. The northernmost
fires8,9 show the same dALT of 0.005 m (fire8) and -0.005 m (fire9). Fire8 points slight changes directly
after the fire, while fire9 shows rather a decrease of ALT, especially in 2017. But it is difficult to make
reliable statements on the development of ALT, as time series are very short after the fire and it is
possible, that both pass the same progress as fires in the south. But it is also possible that due to the
low burn severity the organic layer was not really harmed. Even though the GST is an instant driver
of ALT dynamics (Bai et al., 2018), slopes do not show the same trends for all fires.
All in all, ALT over time can have very different patterns, as it is dependent on many factors. Some

studies show an insignificant increase in the first year, followed by a rapid increase in the second year.
At the 8th to 10th year after the fire, a stabilisation of ALT occurs leading to maximum thawing
between the 5th and 10th year after fire (Gibson et al., 2016; Holloway et al., 2020; Viereck, 1982).
Therefore, some studies have shown that the ALT does not increase significantly during the first five
years after a severe burn, but increases rapidly during the second five years, leading to a peak thaw
depth at the 25th year after burn (Viereck et al., 2008). Hence, some time series might be too short
to make reliable statements of post-fire ALT development.
Overlooking the slopes, the same development is confirmed. The slopes of the fire area after the
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fire compared to before, fire2,3 show an increase in ALT from 0.005 to 0.025 (fire2) and 0.006 to 0.024
(fire3), while all the others show a decrease of ALT after the fire event. Fire2,3 show an increase of
ALT compared to the control area at the fourth year after the fire, stating at the same time the end
of the time series. Longer time series, including recovery, may lead also to a negative trend. The
strong increase is also visible for the control area and might be related to global warming in the past
few years. Additionally, the severe burn for fires2,3 might have caused a thickening in ALT. Regarding
fires in the north (2014) with slopes of ts = -0.013 (fire8) and ts = -0.022 (fire9), impacts of fire may
not have occurred until 2018 or because of the low BS, the organic layer was not harmed enough to
cause the ALT to increase. Looking at longer time series negative trends might be explained by the
recovery, as within gradual restoration of vegetation and therefore regeneration of organic layer, the
ALT gradually decreases (Nossov et al., 2013; Yoshikawa et al., 2002).
As last point, the coherence of LST and ALT shall be discussed, regarding their overlapping time

series from 2006-2018. The moderate-good correlation between ALT and LST is also seen in the results
of this study. The correlations show moderate positive trends ranging from rs = 0.15 (fire3) to rs =
0.63 (fire9) for all fires, except fire2 with rs = -0.09 showing a negative trend. The positive trend would
mean that with increasing LST, the ALT would increase as well. For fire2, the ALT decreases within
LST increase, possibly due to data uncertainties. Data for GST as well as ALT is insignificant. The
correlation seems to be stronger in the north than in the south, probably due to direct effects and
shorter time period after the fire event.
Nevertheless, the satellite analysis of frozen ground regarding its land surface characteristics remains

challenging due to unfortunate conditions, such as constant cloud coverage, little brightness intensity,
sharp sun angles, and technical limitations (Duncan et al., 2020). Additionally, large uncertainties
are associated with the high spatial variability of permafrost ground and difficulties in the exact
determination of LST due to heterogeneity.
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6. Conclusion and outlook

Wildfires have a great influence on the permafrost environment, but their magnitude is dependent on
various factors like organic layer thickness and vegetation type, soil moisture and soil type, elevation,
burn severity, and vegetation recovery. In this study, the focus lay on the consideration of the burn
severity together with recovery rate and the vegetation type regarding differences between Taiga and
Tundra ecosystems.
On the basis of the calculated LST time series, conclusions and coherences to the impact on per-

mafrost have been drawn, regarding GST and ALT. Short-term effects show a warming effect for both,
Taiga and Tundra permafrost parameters together with an increase in LST. Even though the Tundra
exhibits less burn severity and high recovery rates, the impact on permafrost is greater as Sen’s slopes
are steeper. Therefore, long-term effects show a cooling effect for the Taiga related to the vegetation
recovery. Long-term trends for the Tundra could not be determined due to lack of data, as Tundra
fires in the study area became only more predominant in the past 6 years. Fires are predicted to be
larger, more severe, and higher in frequency related to future climate warming, which raises the concern
that fires, especially in the Tundra due to dryer more flammable vegetation, will be more harmful to
permafrost, contributing even more to positive climate feedback in Arctic permafrost regions, although
this feedback may become negative if the fire frequency would long enough to allow the vegetation to
recover and Arctic greening occurs. But regarding the current state of research, one can assume that
for future wildfires the cooling effect from long-term post-fire LST and GST will be reduced due to
climate change.
To improve future research, the data basis (in-situ and remote-sensing-based) especially for the

Tundra needs to be improved including longer consistent time series. Additionally, the number of
studied Tundra fires should be raised regarding other study sites along the Siberian Tundra regions,
to include more reference data. As the last point, further major parameters impacting the permafrost,
like soil moisture, should be studied and compared with present data to better understand the overall
content and to make even more reliable future predictions.

43



Appendix A.

Values and coefficients

Table A1. Parameters used for the LT algorithm.

Parameter Values
maxSegements 3
spikeThreshold 0.6

vertexCountOvershoot 4
preventOneYearRecovery true

recoveryThreshold: 0.3
pvalThreshold: 0.1

bestModelProportion: 0.75
minObservationsNeeded: 6

Table A1.: Parameters used for the LT algorithm.

Table A2. Coefficients used to calculate the AFs.

Sensor Coefficients

Landsat-5 TM

 0.07518 −0.00492 1.03189
−0.59600 −1.22554 0.08104
−0.02767 1.43740 −0.25844


Landsat-t ETM+

 0.06518 0.00683 1.02717
−0.53003 −1.25866 0.10490
−0.01965 1.36947 −0.24310


Landsat-8 OLI-TIRS

 0.04019 0.02916 1.01523
−0.38333 −1.50294 0.20324
0.00918 1.36072 −0.27514


Table A2.: Coefficients used to calculate the AFs.
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Appendix B.

Graphs and tables

Figure B1. Yearly summer mean LST time series of fire and control areas.
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Figure B1.: Yearly summer mean LST time series of fire and control areas.

Figure B2. Yearly summer mean NBR time series of fire and control areas.
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B3. Yearly mean GST time series of fire and control areas.
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Figure B3.: Yearly mean GST time series of fire and control areas.

B4. Visualization of GST residuals.
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B1. Residuals of GST.
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Table B1.: Residuals of GST.
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Figure B6. Yearly mean ALT time series of fire and control areas.
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Figure B5.: Yearly mean ALT time series of fire and control areas.

Figure B7. Visualization of ALT residuals.

51

Rectangle

Rectangle



Appendix B. Graphs and tables

−3

−2

−1

0

1

2000 2005 2010 2015
year

re
s
id

u
a
ls Legend

fire
control

(a) ALT residuals of fire2.

(a) Fire2.

−2

−1

0

1

2

2000 2005 2010 2015
year

re
s
id

u
a
ls Legend

fire
control

(b) ALT residuals of fire3.

(b) Fire3.

−2

−1

0

1

2000 2005 2010 2015
year

re
s
id

u
a
ls Legend

fire
control

(c) ALT residuals of fire5.

(c) Fire5.

−2

−1

0

1

2

2000 2005 2010 2015
year

re
s
id

u
a
ls Legend

fire
control

(d) ALT residuals of fire6.

(d) Fire6.

−2

−1

0

1

2000 2005 2010 2015
year

re
s
id

u
a
ls Legend

fire
control

(e) ALT residuals of fire7.

(e) Fire7.

−2

−1

0

1

2000 2005 2010 2015
year

re
s
id

u
a
ls Legend

fire
control

(f) ALT residuals of fire8.

(f) Fire8.

Figure B6.: Visualization of ALT residuals.
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Table B2.: Residuals of ALT.

B8. Correlation plots of LST and GST.
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(a) Fire1. (b) Fire2. (c) Fire3.

(d) Fire4. (e) Fire5. (f) Fire6.

(g) Fire7. (h) Fire8. (i) Fire10.

Figure B7.: Correlation of LST and GST.

B9. Correlation plots of LST and ALT.
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(a) Fire1. (b) Fire2. (c) Fire3.

(d) Fire4. (e) Fire5. (f) Fire6.

(g) Fire7. (h) Fire8. (i) Fire9.

Figure B8.: Correlation of LST and ALT.
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