Comparative visual and DNA-based diet assessment extends the prey spectrum of polar cod Boreogadus saida
The Arctic marine ecosystem is changing fast due to climate change, emphasizing the need for solid ecological baselines and monitoring. The polar cod Boreogadus saida functions as key species in the Arctic marine food web. We investigated the stomach content of polar cod from the northern Barents Sea using DNA metabarcoding with the mitochondrial cytochrome c oxidase I (COI) gene in parallel with classical visual analysis. Arctic amphipods and krill dominated the diet in both methods. Yet, metabarcoding allowed for the identification of digested and unidentifiable prey and provided higher taxonomic resolution, revealing new and undiscovered prey items of polar cod in the area. Furthermore, molecular results suggest a higher importance of barnacles and fish (supposedly eggs and pelagic larvae) in the diet than previously recorded. Parasites and, in 6 cases other prey items, were only visually identified, demonstrating the complementary nature of both approaches. The presence of temperate and boreal prey species such as Northern krill and (early life stages of) European flounder and European plaice illustrate the advection of boreal taxa into the polar region or may be indicative of ongoing borealization in the Barents Sea. We show that a combination of visual analysis and metabarcoding provides complementary and semi-quantitative dietary information, and integrative insights to monitor changing marine food webs.
AWI Organizations > Biosciences > Integrative Ecophysiology
Helmholtz Research Programs > CHANGING EARTH (2021-2027) > PT6:Marine and Polar Life: Sustaining Biodiversity, Biotic Interactions, Biogeochemical Functions > ST6.2: Adaptation of marine life: from genes to ecosystems
Helmholtz Research Programs > CHANGING EARTH (2021-2027) > PT6:Marine and Polar Life: Sustaining Biodiversity, Biotic Interactions, Biogeochemical Functions > ST6.4: Use and misuse of the ocean: Consequences for marine ecosystems