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Abstract

Background: Metagenomics caused a quantum leap in microbial ecology. However, the inherent size and
complexity of metagenomic data limit its interpretation. The quantification of metagenomic traits in metagenomic
analysis workflows has the potential to improve the exploitation of metagenomic data. Metagenomic traits are
organisms’ characteristics linked to their performance. They are measured at the genomic level taking a random
sample of individuals in a community. As such, these traits provide valuable information to uncover
microorganisms’ ecological patterns. The Average Genome Size (AGS) and the 16S rRNA gene Average Copy
Number (ACN) are two highly informative metagenomic traits that reflect microorganisms’ ecological strategies as
well as the environmental conditions they inhabit.

Results: Here, we present the ags.sh and acn.sh tools, which analytically derive the AGS and ACN metagenomic
traits. These tools represent an advance on previous approaches to compute the AGS and ACN traits. Benchmarking
shows that ags.sh is up to 11 times faster than state-of-the-art tools dedicated to the estimation AGS. Both ags.sh
and acn.sh show comparable or higher accuracy than existing tools used to estimate these traits. To exemplify the
applicability of both tools, we analyzed the 139 prokaryotic metagenomes of TARA Oceans and revealed the
ecological strategies associated with different water layers.

Conclusion: We took advantage of recent advances in gene annotation to develop the ags.sh and acn.sh tools to
combine easy tool usage with fast and accurate performance. Our tools compute the AGS and ACN metagenomic
traits on unassembled metagenomes and allow researchers to improve their metagenomic data analysis to gain
deeper insights into microorganisms’ ecology. The ags.sh and acn.sh tools are publicly available using Docker
container technology at https://github.com/pereiramemo/AGS-and-ACN-tools.

Keywords: Microbial ecology, Metagenomics, Functional traits, Average genome size, 16S rRNA gene average copy
number

Background
Advances in high-throughput sequencing technologies have
pushed forward metagenomic studies, allowing the gener-
ation of massive amounts of data. As a consequence, meta-
genomics has become crucial to study microorganisms’
ecology [1]. Nonetheless, making sense of the metagenomic
data is a complex and computationally intensive task. Com-
monly, metagenomes consist of many short-read sequences

obtained from numerous different species, many of which
are unknown.
Functional trait based-analyses offer an opportunity to

improve our understanding of microorganisms’ ecology
[2–4]. In particular, community functional traits mea-
sured at the genome level in a random sample of indi-
viduals (i.e., metagenomic traits), can help to uncover
ecological patterns in short-read metagenomic data [5].
Functional traits are defined as characteristics of an organ-
ism that are linked to its performance, and consequently,
influence its ecology and evolution [6]. Previous studies
have used metagenomic traits to explain different aspects
of microbial ecology, including why microorganisms live
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in a particular environment or how they respond to envir-
onmental changes [7–9].
The Average Genome Size (AGS) and the 16S rRNA

gene Average Copy Number (ACN) are two metage-
nomic traits that can be computed from unassembled
metagenomic data and provide valuable information to
study the ecology of microbes. The genome size is
known to be associated with environmental complexity
and the organisms’ lifestyle [9–11]. Larger genomes tend
to contain a more diverse metabolic repertoire, which in
turn allows organisms to metabolize a greater diversity
of substrates and inhabit heterogeneous environments
[12]. Further, the AGS of a metagenome is important
from a statistical perspective: the larger the AGS, the
lower is the probability of sampling a specific gene.
Hence, in order to avoid potential biases, this trait
should be taken into account in gene-centric compara-
tive metagenomics [13]. Lastly, the AGS can be used to
estimate the proportion of an average-sized genome that
has been sequenced to exhaustion, which can help to de-
termine an appropriate sequencing depth, in particular
when the aim is to generate metagenome-assembled ge-
nomes (MAGs) [14]. On the other hand, the 16S rRNA
gene average copy number provides additional insights
into the ecology of microorganisms. The 16S rRNA gene
copy number in prokaryote genomes is known to vary
from 1 to 15 [15]. This trait is associated with different
growth strategies: organisms with low copy numbers tend
to utilize resources more efficiently and inhabit oligotrophic
environments, while those with high copy numbers can
grow more rapidly under favorable conditions [16–18].
Currently, there are two publicly available tools dedi-

cated to the computation of the AGS in metagenomes:
the Genome relative Abundance and Average Size
(GAAS) [19] and MicrobeCensus [20]. GAAS computes
the AGS based on a BLAST search [21] against a refer-
ence database of microbial genomes. It was the first tool
developed for the computation of the AGS, and although
useful at its time, the runtime renders it highly impracti-
cal due to the now available large volume of metagen-
omes. Also, the fact that GAAS relies on genome
databases to estimate the AGS, limits its accuracy when
analyzing metagenomic samples containing novel taxa
[20]. Alternatively, MicrobeCensus computes the AGS
based on the abundance information of 30 universally
distributed single-copy genes, following an approach ini-
tially proposed by Raes [22]: the AGS is estimated based
on the abundance-weighted average of these marker
genes, using optimized gene weights and empirically de-
termined proportionality constants. Although Microbe-
Census has been shown to be considerably more accurate
and faster than GAAS, the rapid increase of data gener-
ated by high-throughput sequencing technologies can still
challenge its applicability.

For the ACN estimation, there are three publicly avail-
able tools able to predict this trait in metagenomic and
amplicon data (i.e., PICRUSt [23], CopyRighter [24] and
PAPRICA [25]). The approaches implemented in these
tools are based on the work of Kembel et al. (2012) [26],
which showed that the 16S rRNA gene copy number can
be predicted based on the phylogenetic relationships of
environmental sequences to reference organisms with
known gene copy numbers. Although these tools can be
used to estimate the ACN, their objective is to correct
for copy number counts when estimating organisms’
abundances. They comprise a series of computationally
intensive tasks, and their accuracy has been shown to be
limited when analyzing taxa for which there are no close
representatives in the reference phylogenies [27].
In this work, we developed two tools, which analytically

derive the Average Genome Size (AGS) and 16S rRNA
gene Average Copy Number (ACN) in prokaryotic meta-
genomes (ags.sh and acn.sh, respectively). Our implemen-
tations exploit recent advances in gene annotation
algorithms to make methodological improvements for the
estimation of these traits. We show that the ags.sh and
acn.sh tools can rapidly and accurately predict the AGS
and ACN, respectively. Compared to other tools used to
estimate these traits, ags.sh and acn.sh represent an im-
provement in terms of accuracy and computational speed.
Lastly, we analyzed the AGS and ACN in the TARA
Oceans dataset [28], where we demonstrate the applicabil-
ity of our tools and the value of these traits to reveal the
ecological strategies adopted by microbial communities to
cope with different environmental conditions.

Materials and methods
Implementation
The ags.sh and acn.sh tools were written in AWK, Bash,
and R, and are provided as command line applications.

Average genome size computation tool (ags.sh)
ags.sh computes the Average Genome Size (AGS) and
Number of Genomes (NGs) in metagenomic samples,
based on the annotation of 35 single-copy genes that are
universally present in prokaryotes [22] (Additional file 1).
The workflow of ags.sh consists of the following steps:
1) Short-read sequences are filtered by length and
trimmed with BBDuk [29] (optional step); 2) Open
Reading Frames (ORFs) are predicted in the short-read
sequences with FragGeneScan-Plus [30, 31] (optional
step); 3) Single-copy genes are annotated with UProC
[32]; 4) The gene coverage is estimated as the total num-
ber of annotated base pairs divided by the gene length;
5) The NGs is computed as the mean coverage of the 35
single-copy genes (see Eq. 1); 6) The AGS is computed
as the ratio of the total number of base pairs to the NGs
(see Eq. 2).
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NGs ¼ 1
35

X35

i¼1

gene bpi
gene lengthi

ð1Þ

AGS ¼ total bp
NGs

ð2Þ

Where “gene_bpi” and “gene_lengthi” are the number
of annotated base pairs and length of marker gene “i”,
and “total_bp” is the total number of base pairs in the
target metagenome.
To annotate the single-copy genes, we created an

UProC database. We downloaded the eggNOG database
version 4.5 [33], selected the amino acid sequences (full-
alignment files) used to create the Hidden Markov
Model profiles of the 35 single-copy genes, applied the
SEG low complexity filtering tool of the NCBI Blast+ 2.2
Suite [21] on these sequences, and created the UProC
database with the uproc-makedb command.

16S rRNA gene average copy number computation tool
(acn.sh)
The workflow implemented in the acn.sh tool, consists
of annotating the 16S rRNA genes with SortMeRNA 2.0
[34], estimating the 16S rRNA gene coverage as the
number of annotated base pairs divided by the 16S
rRNA gene length, and computing the ACN as the ratio
of the 16S rRNA gene coverage to the NGs (see Eq. 3).
The 16S rRNA gene length in this tool is set to 1542 bp,
which corresponds to the full-length 16S rRNA gene of
Escherichia coli. To run SortMeRNA, we use its pre-
packaged silva-bac-16 s-id90 and silva-arc-16 s-id95 16S
rRNA gene sequence databases.

ACN ¼ 16S gene bp=16S gene length
NGs

ð3Þ

Where “16S_gene_bp” and “16S_gene_length” are the
number of annotated base pairs and the 16S rRNA gene
length, respectively, and “NGs” is the number of ge-
nomes in the target metagenome.

Data acquisition, pre-processing, and analysis
The 139 prokaryotic metagenomes of the TARA Oceans
dataset were downloaded from the European Nucleotide
Archive [35] (ENA:PRJEB1787). To pre-process the metage-
nomic short-read data, we applied the following procedure.
We clipped the adapter sequences (obtained from Shinichi
Sunagawa personal communication, July 21, 2015) with the
BBDuk tool of the BBMap 35.00 suite [29]; We then merged
the paired-end reads with VSEARCH 2.3.4 [36], quality
trimmed all reads at Q20 and filtered out sequences shorter

than 45 bp using BBDuk; Lastly, we de-replicated the qual-
ity-controlled sequences with VSEARCH.
We estimated the Average Genome Size (AGS) and

the 16S rRNA gene Average Copy Number (ACN) in
the 139 metagenomes with the ags.sh and acn.sh tools,
respectively. To run the ags.sh tool we used the mini-
mum length parameter set to 100 bp. To filter significant
16S rRNA gene sequence alignments when running the
acn.sh tool, we used an e-value of 1e-5. We selected a
matching subset of 63 TARA Oceans metagenomes
representing the Surface (SRF), Deep Chlorophyll Max-
imum (DCM) and Mesopelagic (MES) water layers in 21
sampling stations [28], to analyze the changes of the
AGS and ACN between water layers.
To test whether the AGS and ACN values differ be-

tween water layers, we applied a paired Wilcoxon rank-
sum test between each pair of water layers, using the
wilcox.test function of the vegan R package [37].
We used TARA Oceans’ taxonomic abundance profile

computed by Sunagawa et al. 2015 based on the annotation
of 16S rDNA Operational Taxonomic Units (OTUs), to
search for genera that correlated with the AGS and ACN.
First, we removed singletons and genera with a total relative
abundance lower than 0.001%, and computed the genera
relative abundance in each metagenome (total sum scaling
standardization). Subsequently, we selected the genera for
which their correlation with either of these traits had a p-
value lower than 0.001 after applying the Bonferroni correc-
tion for multiple comparisons. Additionally, we compared
the AGS with the functional richness computed by Suna-
gawa et al. in the 139 TARA Oceans metagenomes.

Simulation of metagenomic datasets
To assess the performance of our tools, we created three
simulated metagenomic datasets (i.e., General, Infant Gut,
and Marine). Each dataset is composed of 50 metagenomes,
and all metagenomes have a size of two million reads. The
metagenomes of the General dataset were simulated based
on a random selection of prokaryotic species. The Infant
Gut and Marine datasets approximate the taxonomic com-
position of the microbial communities found in the infant’s
gut and marine environments, respectively.
To create each of the three simulated metagenomic data-

sets, we first created a reference dataset of complete gen-
ome sequences and the abundance profiles to define the
community composition of each metagenome. In the case
of the General genome reference dataset, we randomly se-
lected 500 genera from all the prokaryotic genera in the
NCBI RefSeq database [38] and downloaded a maximum of
three genome sequences per genus with an assembly status
of “Complete genome” (on November 8, 2017). The result-
ing dataset comprised 751 different species. For the Infant
Gut genome reference dataset, we used the genus taxo-
nomic annotation of the metagenome-assembled genomes
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(MAGs) generated by Sharon et al. (2013) [39] obtained
from fecal samples collected from a premature infant, to
guide the selection of species. We downloaded for each
species one genome with an assembly status of “Complete
genome” from the NCBI RefSeq database. If a species did
not have a complete representative genome, we randomly
selected another species with the same genus affiliation.
The Infant Gut reference genome dataset contains 95 dif-
ferent species. Finally, the Marine reference genome dataset
was created based on the taxonomic composition of TARA
Oceans 16S rDNA Operational Taxonomic Units (OTUs)
described by [28]. We selected 172 genera for which there
was at least one representative completely sequenced gen-
ome and downloaded a maximum of three genomes per
genus from RefSeq, irrespective of their species affiliation.
This database comprises 308 species.
To define the community profile of each metagenome,

we randomly selected between 20 and 80 genomes from a
reference dataset and assigned the genome abundances by
sampling from a lognormal distribution with mean 1 and
standard deviation of 0.5. We used these profiles together
with the corresponding reference genome sequence data as
an input to run MetaSim v0.9.5 [40], where we set the read
length to 300 bp and the substitution rate to 1 × 10− 3.
Lastly, we simulated a second Marine metagenomic

dataset of 50 metagenomes (i.e., Marine dataset-2). This
dataset was generated using the marine abundance pro-
files and reference genome dataset mentioned above;
however, in this case, we simulated merged paired-end
reads and varied their length according to the following
distribution: p(50 bp) = 0.05; p(110 bp) = 0.15; p(150
bp) = 0.15; p(165 bp) = 0.5; p(180 bp) = 0.15. In addition,
the substitution rate along each read was set to increase
from 1 × 10− 4 to 9.9 × 10− 2. The simulated short-read
sequences were merged using VSEARCH [36] with de-
fault parameters. With this read length distribution and
error rates, we aimed to generate a more realistic data-
set. It has similar characteristics as the metagenomic
data obtained using Illumina HiSeq 2000 sequencing
technology (as the prokaryotic metagenomes of the
TARA Oceans dataset), and the majority of Illumina se-
quencing technologies in general [41].
In Additional file 2, we show the taxonomic compos-

ition of the reference datasets of complete genome se-
quences, and in Additional file 3, we show details of the
simulated metagenomic datasets.

Benchmarking and validation
To benchmark the wall-clock runtime of ags.sh against
MicrobeCensus, we randomly selected five (pre-proc-
essed) metagenomes of the TARA Oceans dataset and
subsampled these to two million paired-end reads with
the seqtk v1 tool [42]. Next, we ran the AGS computation
on each metagenome three times with both tools, using a

different number of threads in each run (i.e., 4, 8, and 16).
All the computations were performed in a workstation
with Intel(R) Xeon(R) CPU E7–4820 v4 @ 2.00GHz.
To benchmark the accuracy of ags.sh against Microbe-

Census, we computed the AGS in the metagenomes of the
General, Infant Gut, and Marine simulated datasets with
both tools and compared it with the real AGS. To assess
the accuracy of these tools in relation to the read length,
we trimmed the 3′ end of the reads to simulate metage-
nomic datasets of different read lengths. Namely, for each
of the General, Marine, and Infant Gut datasets, we
trimmed the simulated 300 bp reads to 100 bp, 120 bp,
130 bp, 140 bp, 150 bp, 160 bp, 170 bp, 180 bp, and 200 bp.
We processed a total of 500 metagenomes per dataset.
In these analyses, ags.sh was run with default parame-

ters and MicrobeCensus was set to process the total
number of reads in a metagenome. To derive the real
AGS of a simulated metagenome, we computed the sum
of the lengths of its component genomes weighted by
their respective abundance, divided by the total abun-
dance of genomes (see Eq. 4). The genome abundances
were obtained from the abundance profiles used to
simulate the metagenomes. To quantify the accuracy, we
computed the Pearson’s correlation and Absolute Per-
centage Error (APE) (see Eq. 5) of the AGS computed by
ags.sh and MicrobeCensus, with respect to the real AGS.

AGSreal ¼ 1
total abund

Xk

i¼1

genome lengthi

� genome abundi ð4Þ

Where “total_abund” is the total abundance in the tar-
get metagenome, and “genome_lengthi” and “genome_
abundi” are the length and abundance of genome “i”,
respectively.

APE ¼ 100� Ref−Est
Ref

����

���� ð5Þ

Where “Ref” and “Est” are the reference and estimated
trait values, respectively.
To compare ags.sh vs. MicrobeCensus on real data, we

computed the AGS with these tools on a randomly se-
lected subset of 50 (pre-processed) metagenomes of
TARA Oceans. To accelerate the computation of the
AGS, we randomly subsampled the metagenomes to two
million reads using the seqtk v1 tool [42].
To measure the wall-clock running time of acn.sh, we

used the same five TARA Oceans metagenomes subsam-
pled to two million paired-end reads and previously used
to benchmark the ags.sh running time. Next, we ran
acn.sh using different thread numbers (i.e., 4, 8, and 16)
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and measured the wall-clock running time. These com-
putations were performed in a workstation with Intel(R)
Xeon(R) CPU E7–4820 v4 @ 2.00 GHz.
To benchmark the accuracy of acn.sh, we compared it

with PICRUSt [23], CopyRighter [24], and PAPRICA
[25]. We computed the ACN with these four tools in the
three simulated metagenomic datasets, where we also
trimmed the 3′ end of the metagenomic reads to pro-
duce different read lengths (i.e., 100 bp, 150 bp, 200 bp,
and 300 bp). We then computed the Pearson’s correl-
ation and APE between the predicted and real ACNs.
To compute the ACN with acn.sh, we ran the tool with

default parameters. To compute the ACN with CopyRigh-
ter and PICRUSt, we applied the following procedure: 1)
Reads containing 16S rRNA genes were identified with
SortMeRNA 2.0 [34]; 2) 16S rRNA gene sequences were
extracted and clustered at 99% identity with VSEARCH
2.3.4 [36]; 3) Cluster centroid sequences were blasted
against the GreenGenes databases GG2012 (release
October 2012) and GG2013 (release May 2013) [43], using
BLASTN [21] with an e-value of 0.001 and an identity
threshold of 99%; 4) The 16S rRNA gene copy numbers of
the best hits were parsed out of the respective lookup tables
(ssu_img40_gg201210.txt and 16S_13_5_precalculated.tab
for CopyRighter and PICRUSt, downloaded from [44, 45],
respectively); 5) The ACN was computed as the average of
the predicted 16S rRNA gene copy number (i.e., 16S rRNA
gene copy number of the best hits), weighted by the abun-
dance of the cluster represented by the respective query
sequence (see Eq. 6).
To compute the ACN with PAPRICA, we used the

cluster centroid sequences to run the paprica-run.sh
script using the –large parameter for the paprica-place_
it.py script (i.e., to increase the memory utilization).
Then, we computed the average of the 16S rRNA gene
copy numbers predicted for these sequences, weighted
by the respective cluster abundances (see Eq. 6).

ACNest ¼ 1
total abund

Xk

i¼1

pred copy numi

� cluster abundi ð6Þ

Where “pred_copy_numi” and “cluster_abundi” are the
predicted 16S rRNA gene copy number and cluster size
of query sequence “i”, and “total_abund”, is the total
number of identified 16S rRNA gene sequences in a
metagenome.
Similarly, as described above, we computed the real

ACN of a metagenome, as the sum of the 16S rRNA
gene copy numbers of its component genomes weighted
by their respective abundance and divided by the total
abundance of genomes (see Eq. 7). The 16S rRNA gene

copy numbers were obtained from the NCBI features
annotation.

ACNreal ¼ 1
total abund

Xk

i¼1

genome copy numi

� genome abundi ð7Þ

Where the “total_abund” is the total abundance in the
target metagenome, and “genome_copy_numi” and “gen-
ome_abundi” are the 16S rRNA gene copy number and
abundance of genome “i”, respectively.

Results and discussion
Our implementation to compute the AGS is based on
the annotation of 35 prokaryotic universally distributed
single-copy genes identified by Raes et al., (2007) [22].
Most of these genes are part of the translation machin-
ery and essential for cellular life. The main finding that
allowed us to develop ags.sh (and in turn acn.sh), is that
the annotation of the 35 marker genes in unassembled
metagenomes, using new, fast and accurate tools, can be
used to rapidly estimate the genes’ coverage, which ac-
curately approximates the total number of genomes
(NGs). Thus, we can derive the AGS analytically, as the
ratio of NGs and the total number of base pairs in a
metagenome. However, to estimate the NGs it is crucial
to perform a precise annotation of the single-copy genes.
To this end, we include in ags.sh an option to filter and
trim sequence reads to obtain the optimal read lengths
for the annotation of single-copy genes (see Fig. 1a). The
computation of the 16S rRNA gene average copy num-
ber follows a similar methodology: we estimate the
coverage of the 16S rRNA genes and divided it by the
NGs (see Fig. 1b).

Benchmarking the average genome size computation tool
(ags.sh)
Firstly, we benchmarked the wall-clock runtime of ags.sh
against MicrobeCensus (see Fig. 2a and Additional file 4).
We used a subset of five TARA Oceans metagenomes sub-
sampled to two million paired-end reads (see Materials and
Methods), to measure the runtime of these tools with in-
creasing number of threads (i.e., 4, 8 and 16). In this ana-
lysis, we also benchmarked the runtime of ags.sh using
previously predicted Open Reading Frame (ORF) amino
acid sequences. We consider this is a likely scenario when
using our tool, given that the prediction of ORFs is a stand-
ard procedure in most metagenomic analysis workflows.
With and without the ORF prediction step, ags.sh was on
average 6.6 and 12.6 times faster than MicrobeCensus, re-
spectively. Ags.sh also showed a greater runtime improve-
ment when we increased the number of threads from 4 to
16. The acceleration achieved by our implementation is the
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result of using a fork of FragGeneScan-plus [30, 31] and the
UProC program [32] for the ORF prediction and gene an-
notation, respectively. FragGeneScan-plus is several times
faster than FragGeneScan [46], and has the same prediction
accuracy, while UProC is up to three orders of magnitude
faster and more sensitive than profile-based methods on
unassembled short-read sequences. Reducing the runtime
also has consequences for the AGS estimation accuracy,
given that all the metagenomic data available can be readily
used to compute this trait.
Secondly, we compared the accuracy of ags.sh against

MicrobeCensus. We used both tools to estimate the
AGS in the simulated metagenomes of three different
datasets we generated (i.e., General, Infant Gut, and
Marine datasets; see Material and Methods). Simulated
data allowed us to calculate the real AGS in the meta-
genomes, which we used as a reference to evaluate the
accuracy of these tools. Each simulated dataset is com-
posed of 50 metagenomes of two million reads of 300
bp, which were trimmed to different read lengths, to
evaluate the accuracy of the tools as a function of the
read length.
The analysis showed that the performance of both

tools changed very little between datasets, and ags.sh
had comparable or higher accuracy than MicrobeCensus

in metagenomes with a read length between 120 and
200 bp (see Additional file 5 and Additional file 6). The
Pearson’s correlation values showed marginal differences
between both tools and remained practically constant
within each dataset when the read length was changed.
However, the error values revealed that the accuracy of
ags.sh varies with the read length, with a trend of having
higher accuracy than MicrobeCensus in metagenomes
with a read length between 120 and 200 bp. Microbe-
Census was less affected by the read length and outper-
formed ags.sh in metagenomes with read lengths of 100
and 300 bp.
The optimal read length range observed for our tool re-

flects the read length in which UProC has an optimal sensi-
tivity and specificity. In essence, if the reads are too short
there is a lower sensitivity, and consequently, the AGS is
overestimated (NGs underestimated). Conversely, when the
reads are too long, there is a lower specificity and the AGS
is underestimated (NGs overestimated).
It is important to point out that ags.sh has an option

to remove and trim metagenomic reads to obtain appro-
priate read lengths. This way, it can always process
metagenomic reads where it has its highest accuracy.
In addition, to test these tools in a more realistic sce-

nario, we generated a second simulated Marine

a)

b)

Fig. 1 Workflows implemented in the ags.sh and acn.sh tools. a ags.sh workflow consists of the following steps: 1) Filtering out and trimming
reads to obtain an appropriate read length range using the BBduk tool [29] (optional step); 2) Predicting the Open Reading Frames (ORFs) with
FragGeneScan-plus [30] (optional step); 3) Annotating the single-copy genes in the ORF’s amino acid sequences with UProC [32]; 4) Computing
the Number of Genomes (NGs) as the mean gene coverage of the single-copy genes; 5) Counting the total number of base pairs; 6) Computing
the Average Genome Size (AGS) as the ratio of the total number of base pairs to the NGs. b The tasks performed by acn.sh are as follows: 1)
Annotating the 16S rRNA genes with SortMeRNA [34]; 2) Computing the 16S rRNA gene coverage as the number of annotated base pairs divided
by the 16S rRNA gene length; 3) Parsing the NGs from the ags.sh output; 4) Computing the ratio of the 16S rRNA gene coverage to the NGs to
derive the 16S rRNA gene Average Copy Number (ACN)
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metagenomic dataset (i.e., Marine dataset-2). Marine
dataset-2 is composed of 50 metagenomes of two million
merged paired-end reads, with a length that varies from
100 to 180 bp, and with an error rate increasing along
each read from 1 × 10− 4 to 9.9 × 10− 2. With such data
characteristics, we simulate the data generated by Illu-
mina HiSeq 2000 sequencing technology, and in particu-
lar, the characteristics of TARA Oceans metagenomes,
which we analyzed as an example application of our
tools (see below). In Fig. 2b, we show the scatter plots
comparing the estimated AGS using ags.sh and Microbe-
Census, vs. the reference AGS. In this example,
MicrobeCensus produced more biased estimates: the
tool consistently underestimated the AGS. The Pearson’s
correlation and median of the Absolute Percentage Er-
rors (MdAPEs) were 1.8% and 0.95 for ags.sh, and 4.5%
and 0.89 for MicrobeCensus, respectively.
Lastly, we compared the AGS obtained with ags.sh and

MicrobeCensus on real data. We used these tools to com-
pute the AGS in 50 metagenomes of the TARA Oceans
dataset (Fig. 2c). To reduce the computation time, we ran-
domly subsampled the metagenomes to two million reads.
Although the AGSs computed with both tools were highly
correlated (Pearson’s r = 0.97), MicrobeCensus showed a

similar pattern regarding the underestimation of the AGS
as observed in the simulated data, which indicates that the
predictions of our tool are closer to the true AGS of these
samples. The bias observed in MicrobeCensus estimates
might be explained by the fact that this tool is based on a
series of empirically determined constants, resulting in a
somewhat limited generalization.

Benchmarking the 16S rRNA gene average copy number
estimation tool (acn.sh)
Analog to the previous benchmark analysis, we mea-
sured the wall-clock runtime of acn.sh using 4, 8, and 16
threads on the five subsampled metagenomes of TARA
Oceans (see Fig. 3a and Additional file 7). In this evalu-
ation, we observed that acn.sh scales very well with the
number of threads and is able to process approximately
one million reads per minute using eight threads. The
most computationally intensive task performed by acn.sh,
is the annotation of the 16S rRNA genes with SortMeRNA
[34], which determines the runtime. SortMeRNA has an
optimal accuracy-speed trade-off, making it very conveni-
ent for the computation of this trait in metagenomic data.
In addition, given that acn.sh depends on the NGs esti-
mated with ags.sh, we benchmarked the running time of
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Fig. 2 Benchmarking the running time and accuracy ags.sh against MicrobeCensus. a Plot comparing the running time of ags.sh with
MicrobeCensus. We compared the wall-clock runtime between both tools using 4, 8, and 16 threads, in five TARA Oceans metagenomes
subsampled to two million paired-end reads. We also compared the ags.sh runtime using previously predicted Open Reading Frames (ORFs).
When the ORF prediction procedure was included, ags.sh was 11 times faster than MicrobeCensus using 16 threads. b Scatter plots comparing
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ags.sh plus acn.sh. When both tools are taken into ac-
count, we observed that a two million paired-end reads
metagenome is processed in less than four minutes using
eight threads.
We also compared the accuracy of acn.sh with PICRUSt,

CopyRighter, and PAPRICA (see Additional file 8 and
Additional file 9). As described above, we used acn.sh to
compute the ACN in the simulated metagenomes of the
General, Infant Gut, and Marine datasets, trimmed to dif-
ferent read lengths. We then computed the real ACN,
which we used as a reference to assess the accuracy of
these tools. This analysis showed that acn.sh is consider-
ably more accurate than the other three tools. As observed
for ags.sh, acn.sh had comparable performance in the
three datasets: while the correlation coefficients were not
affected by the read length, the APE values increased in
metagenomes of 100 and 300 bp. The under- and overesti-
mation of the NGs computed by ags.sh limited the accur-
acy in these latter two cases. When considering an
appropriate read length (i.e., 150 and 200 bp), the correl-
ation and MdAPE values ranged from 0.9 to 0.94, and
from 2.9 to 6.4%, respectively.
Conversely, the performance of PICRUSt, CopyRighter,

and PAPRICA varied between datasets, especially between

the Infant Gut and Marine datasets, where we observed
their highest and lowest performance, respectively. For in-
stance, the correlation and MdAPE values of PAPRICA,
which showed the highest accuracy of the three in the Infant
Gut dataset, went from 0.78 to 0.48, and from 3.2 to 15.8%,
respectively, in the metagenomes of 100 bp. Such finding is
likely to reflect the low representation of sequenced environ-
mental taxa in reference phylogenies, which is known to
limit the prediction power of these tools [27].
In Fig. 3b and c, we show the scatter plots comparing

the ACN computed with acn.sh and CopyRighter vs.
the reference ACN in the Marine dataset-2. We se-
lected CopyRighter for this comparison since it per-
formed (moderately) better than PICRUSt and
PAPRICA in the Marine dataset. The scatter plots show
the superiority of acn.sh for the computation of the
ACN, particularly evidenced by the correlation coeffi-
cients (Pearson’s r = 0.9 and Pearson’s r = 0.54 for
acn.sh and CopyRighter, respectively). However, we
stress that PICRUSt, CopyRighter, and PAPRICA aim
to correct for the copy number variation when analyz-
ing the composition of 16S rRNA gene Operational
Taxonomic Units (OTUs), and were not designed to
compute the ACN. Therefore, these tools implement a
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more complex approach based on the phylogenetic an-
notation of the 16S rRNA genes.

Analysis of the average genome size and 16S rRNA gene
copy number in TARA oceans metagenomes
We computed the AGS and ACN in the 139 prokaryotic
metagenomes of TARA Oceans (using complete metage-
nomic samples) to analyze microorganisms’ ecological
strategies associated with different marine environmental
conditions. Firstly, we conducted pairwise comparisons of
the AGS and ACN between water layers. For this task, we
used a matching subset of 63 TARA Oceans metagenomes
that represent the surface (SRF), deep chlorophyll max-
imum (DCM) and mesopelagic (MES) water layers in 21
sampling stations across the globe [28]. The results
showed that apart from the ACN of the SRF and DCM
water layers, all other water layers have significant differ-
ences in their trait values (paired Wilcoxon rank-sum test;
all p-values < 0.05; see Additional file 10). As observed
previously [16], we found that the two traits were

significantly correlated among themselves (Pearson’s r =
0.38; p-value = 0.0023) (see Fig. 4a; Additional file 11).
The distributions of the ACN values resemble the dif-

ferences in minimum generation times between water
layers, computed by Sunagawa et al. 2015 for the same
metagenomes. As shown by Vieira-Silva & Rocha (2010)
[17], the 16S rRNA gene copy number has a strong cor-
relation with the growth rate of microorganisms.
Additionally, based on the analysis of the 139 TARA

Oceans metagenomes, we observed significant correla-
tions between both traits and the sampling depth in the
water column (AGS vs. water depth: Pearson’s r = 0.46;
ACN vs. water depth: Pearson’s r = 0.28; all p-values <
0.001; Additional file 11). Similar findings relating the gen-
ome size and 16S rRNA copy number with water depth
have been previously described [47, 48]. We also obtained
a significant correlation between the ACN and water
temperature after controlling for water depth (Pearson’s
r = − 0.34 and p-value < 0.001; Additional file 11), which
was not observed for the AGS. This result could be

a) b) c)

d)

Fig. 4 Exploratory analyses performed on TARA Oceans metagenomes. a Scatter plot comparing the AGS and ACN in the matching subset of 63
TARA Oceans metagenomes representing the surface, deep chlorophyll maximum and mesopelagic water layers (SRF, DCM, and MES,
respectively) in 21 sampling sites. The box plots in the lower and left-hand side panels show the distributions of the Average Genome Size (AGS)
and 16S rRNA gene Average Copy Number (ACN) in the SRF, DCM, and MES water layers. For the sake of clarity, two metagenomes with
relatively large AGS or ACN values were not included in the plot. These are the TARA_076_DCM_0.22–3 with an AGS = 5,036,010 bp and
TARA_064_DCM_0.22–3 with an ACN = 2.4. b Scatter plots comparing the AGS with the log relative abundance of the Herbiconiux and Candidatus
Pelagibacter genera (upper and lower panel, respectively) in TARA Oceans metagenomes. Herbiconiux and Candidatus Pelagibacter genera had the
strongest positive and negative Pearson’s correlations with the AGS, respectively. c Scatter plot comparing the ACN with the log relative
abundance of the Glaciecola genus in TARA Oceans metagenomes. This genus showed the strongest positive Pearson’s correlation with the ACN.
The abundance of these genera was computed by Sunagawa et al. based on the annotation of 16S rDNA Operational Taxonomic Units (OTUs). d
Scatter plot comparing the AGS with the functional richness of TARA Oceans metagenomes. The functional richness was computed by Sunagawa
et al. based on the abundance estimation of eggNOG orthologous groups
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explained by the fact that psychrophiles are slower
growers than expected, given their growth-associated gen-
omic traits [17]. That is, for the same minimal generation
times, organisms inhabiting colder marine environments
tend to have a greater 16S rRNA gene copy number to
compensate for slower enzymatic activity.
Based on the taxonomic annotation of the rDNA Op-

erational Taxonomic Units (OTUs) obtained by Suna-
gawa et al. 2015 for TARA Oceans metagenomes, we
looked for genera associated with the variability of the
AGS and ACN traits. This analysis revealed that the
genera Herbiconiux and Candidatus Pelagibacter had
the strongest positive and negative correlations with the
AGS, respectively, and the genus Glaciecola had the
strongest positive correlation with the ACN (see Fig. 4b
and c; Additional file 11). Herbiconiux species tend to
have a relatively large genome size, often above 6 Mbp,
while Candidatus Pelagibacter has a streamlined gen-
ome, which is around 1.3 Mbp. On the other hand,
sequenced species of Glaciecola contain from four to
five rRNA gene operons [49]. These are marine microor-
ganisms with extreme values in their genomic traits, and
represent different ecological strategies associated with
different environments (see below). We note that we did
not find any genus with a significant negative correlation
with the ACN. That is, the ACN, which tends to be low,
appears to vary between metagenomes, mainly when
these have a higher abundance of organisms with a high
16S rRNA gene copy number.
Lastly, we compared the AGS of TARA Oceans metagen-

omes, with the functional richness estimated by Sunagawa
et al. 2015 based on the annotation of eggNOG orthologous
groups [33]. We observed a highly significant correlation
between these two metagenomic traits (Pearson’s r = 0.52
and p-value < 0.0001; see Fig. 4d and Additional file 11).
This result was expected, given that the number of genes in
prokaryotes is known to be linearly related to the genome
size [50]. However, the nature of this relationship using the
community AGS and functional richness offers new in-
sights into the ecology of marine microbial communities.
The AGS explained a moderate amount of the functional
richness variation (R2 = 0.27). Several other factors can
influence the community functional richness and AGS.
For example, the functional richness is also highly cor-
related with the taxonomic richness and water depth
(Pearson’s r = 0.85 and 0.65, respectively; all p-values <
0.0001; Additional file 11). A plausible explanation, in
line with previous work characterizing prokaryotic eco-
logical strategies [9, 51], is that more heterogeneous
environmental conditions, which appear to be found in
deeper water layers [28, 52], result in a higher func-
tional and taxonomic richness and more complex eco-
logical interactions. In turn, a higher complexity of the
ecological interactions and a greater environmental

heterogeneity, increase the demand for larger gene rep-
ertories, and consequently, larger genomes.
Taken together, these exploratory analyses indicate that

surface marine microbial communities are characterized by
a small AGS and low ACN. Such trait values denote the
presence of efficient, slow growers and specialist organisms
(i.e., k-strategist), in agreement with the oligotrophic envir-
onmental conditions commonly found in marine surface
waters. On the contrary, microbial communities from the
DCM and MES water layers exhibited a larger AGS and
greater ACN, which indicate that organisms inhabiting dee-
per layers tend to have a more diverse metabolism and
grow faster (i.e., r-strategist). As such, these organisms re-
spond better to environmental changes and can exploit in-
tensively nutrient rich micro-niches [10, 53, 54].

Conclusions
In this work, we developed the ags.sh and acn.sh tools
that accurately and rapidly compute the average genome
size and 16S rRNA gene average copy number in unas-
sembled prokaryotic metagenomes. The quantification
of these traits provides a powerful approach to
characterize microbial ecological strategies. We bench-
marked and evaluated the performance of these tools
using simulated metagenomic datasets composed of con-
trasting microbial communities. In these analyses, we
showed that the ags.sh tool is up to 11 times faster with
comparable or higher accuracy than MicrobeCensus. Re-
ducing the computation time is a valuable improvement
given the large data volumes generated by current se-
quencing technologies. Ags.sh can be readily used to
process a comprehensive metagenomic sample for the
estimation of the AGS, as exemplarily applied here on
TARA Oceans metagenomes. Given that MicrobeCensus
is already a highly accurate tool, there was little room
for improvement in this sense, and ags.sh only showed a
moderate improvement in accuracy regarding the abso-
lute error rates. However, the fact that ags.sh derives the
AGS analytically makes it more reliable in comparison
to MicrobeCensus. Lastly, our benchmarking analysis of
the acn.sh tool showed that it has remarkable accuracy
and outperforms the ACN computation approaches
based on the copy number predictions of PICRUSt,
CopyRighter, and PAPRICA. The fact that acn.sh is ex-
clusively dedicated to the computation of the ACN al-
lows to considerably simplify the analysis workflow.
The exploratory analyses performed on TARA Oceans

metagenomes demonstrate the applicability of our tools
to compute the AGS and ACN traits on unassembled
metagenomic data, and predict the dominant ecological
strategies taking place within microbial communities.
We note that the results presented here, show that the

AGS and ACN can be derived analytically based on the an-
notation of single-copy and 16S rRNA genes. Accordingly,
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future implementations of the ags.sh and acn.sh tools have
the potential to improve in speed and accuracy, as gene an-
notation tools continue to advance. Additionally, in future
implementations, it will be of particular interest to include
the computation of the AGS and ACN variances [55].

Availability and requirements
Project name: AGS-and-ACN tools
Project home page: https://github.com/pereiramemo/

AGS-and-ACN-tools
Operating system(s): Platform independent.
Programming language: AWK, Bash, and R.
Other requirements: Docker.
License: GNU General Public License v3.0.
Any restrictions to use by non-academics: none.
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