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Abstract. Computation of barotropic and meridional over-
turning streamfunctions for models formulated on unstruc-
tured meshes is commonly preceded by interpolation to a
regular mesh. This operation destroys the original conserva-
tion, which can be then artificially imposed to make the com-
putation possible. An elementary method is proposed that
avoids interpolation and preserves conservation in a strict
model sense. The method is described as applied to the dis-
cretization of the Finite volumE Sea ice – Ocean Model (FE-
SOM2) on triangular meshes. It, however, is generalizable
to colocated vertex-based discretization on triangular meshes
and to both triangular and hexagonal C-grid discretizations.

1 Introduction

Over recent years, a considerable progress has been achieved
in the development of global ocean circulation models work-
ing on horizontally unstructured meshes such as FESOM1.4
(Wang et al., 2014), MPAS-Ocean (Ringler et al., 2013),
FESOM2 (Danilov et al., 2017) and ICON-Ocean (Korn,
2017). By refining in dedicated areas of the world ocean,
these models may resolve dynamics that would otherwise
require nesting or using a higher resolution globally. Since
these models still use vertically aligned meshes, the over-
head of horizontally unstructured mesh is minimized because
the horizontal neighborhood information is valid for the en-
tire vertical column and becomes negligible as the number
of vertical levels is increased. These models show a very
good parallel scalability and reach throughput (in simulated

years per day) comparable to that of structured-mesh mod-
els (Koldunov et al., 2019). However, the unstructured char-
acter of meshes makes many traditional diagnostics, such
as barotropic and meridional overturning streamfunctions,
difficult. Any interpolation on a regular mesh violates the
sense in which continuity is satisfied in a model and intro-
duces errors which, while often acceptable for computing lo-
cal fluxes and transports, are very annoying in computations
of global or basin streamfunctions where large positive and
negative contributions are combined together. Furthermore,
in the case of streamfunctions, one is most frequently inter-
ested in variability, which might be easily masked or biased
by the inconsistencies introduced by the analysis procedure.
In the early version of FESOM, based on continuous finite
elements, the situation was exacerbated by continuity being
formulated in a weighted sense, without explicitly computed
fluxes (Sidorenko et al., 2009).

All new large-scale ocean models are based on the finite-
volume method and as such have a clear definition of fluxes
at boundaries of the control cells of their meshes. However,
these fluxes are defined on irregularly located faces, so in-
stead of using them in their original sense, one is tempted to
rely on interpolation to a regular mesh. Our practice shows
that incurred inconsistencies can be large, and this road
should not be followed if global or basin-scale quantities
are computed. It turns out that there are efficient and easy-
to-implement procedures that are based on exact fluxes and
balances and that might be used for analyses. These proce-
dures do not rely on interpolation but use binning, which is
sufficient in most cases except for very coarse meshes. The

Published by Copernicus Publications on behalf of the European Geosciences Union.



3338 D. Sidorenko et al.: Computing streamfunctions on unstructured meshes

intention of this note is to describe some of them. In doing
so we will use the arrangement of variables of FESOM2;
however the adjustments needed for other models with dif-
ferent discretizations are relatively straightforward and will
be briefly mentioned. We suspect that similar procedures are
already used by other groups – in particular, for the analy-
sis on cubed-sphere meshes of the Massachusetts Institute of
Technology general circulation model see, e.g., Adcroft et al.
(2004), tripole grid configurations of Parallel Ocean Program
(POP; Smith and Gent, 2004) or MPAS-Ocean – but we feel
that they need to be documented for unstructured meshes, fa-
cilitating the use of unstructured-mesh models by a broader
community.

We will discuss computations of meridional overturning
streamfunctions in height and density coordinates as well as
computations of barotropic streamfunctions.

2 Geometry of discretization

FESOM2 uses a cell–vertex discretization, placing horizon-
tal velocities on centroids of triangles and scalar quantities at
vertices if viewed from the surface, as shown schematically
in Fig. 1. These quantities are stored at midlevels. Vertical
velocities are located at vertices and full levels. We use index
v to enumerate vertices, c (cells) to enumerate triangles, and
k to enumerate vertical levels or midlevels (centers of layers).
The velocity control volumes are mesh triangles, and scalars
are associated with median-dual control volumes formed in
the horizontal plane by connecting midpoints of edges with
cell centroids. On uniform equilateral meshes they coincide
with hexagons of the dual mesh, but in the general case they
differ. For the reasons discussed in Danilov et al. (2017) the
bottom topography of FESOM is given on cells, implying
that velocity control volumes are triangular prisms in 3D.
However, a part of scalar control volume can be cut by bot-
tom topography at depths, and its footprint will differ from
that at the surface. As a consequence, there is a 1D array Ac
of triangle areas and a 2D array Akv of the areas of scalar
control volumes. The transport through the top face of scalar
prism with indices (k,v) is wkvAkv , with wkv the respective
vertical (or cross-level in the case of moving level surfaces)
velocity. Each triangle is characterized by the list of its ver-
tices v(c), which is (v1,v2,v3) for c = c1 in Fig. 1.

The elementary structure used in computations of horizon-
tal fluxes between two scalar control volumes is given by
mesh edges (labeled with index e). An edge is characterized
by its two vertices (v1,v2) symbolically written as v(e) and
two cells it belongs to, (c1,c2) symbolically written as c(e).
For boundary edges c2 is absent, and c1 is the left cell to the
edge direction, which is from the edge first vertex to the sec-
ond one. There are two vectors drawn from edge midpoint
to centroids of edge cells, (dec1 ,dec2). Their components are
expressed in local Cartesian coordinates related to respective
cells. The transport through the faces of the scalar control

volume in layer k in the direction of the edge is

Fe = [−(ez×dec1) ·ukc1hkc1 + (ez×dec2) ·ukc2hkc2 ]Te, (1)

where ez is a unit vertical vector, hkc1 and hkc2 are the layer
thicknesses at respective velocity points, and Te is the tracer
estimate at edge midpoint. Te = 1 for volume transport. In
MPAS-Ocean or ICON-Ocean codes, which are based on
hexagonal and triangular C-grid discretizations, normal ve-
locities are located at edges and computations of transports
are simpler. The arrangement of hexagonal C grid is easily
obtained from the case considered here if edges of dual trian-
gular mesh are considered (with the difference that centroids
are replaced by circumcenters and lines connecting c1 with
c2 are perpendicular to edge “e”). Importantly, edge-related
transports are the same as in the model; however care should
also be taken that Te is computed in the same way as in the
model if fluxes are to be properly analyzed.

3 Meridional overturning

For zonally integrated vertical and meridional veloci-
ties W =

∫ xe
xw
w(x′,θ,z)dx′ and V =

∫ xe
xw
v(x′,θ,z)dx′ of a

divergence-less flow we can introduce (see, e.g., Kundu et al.,
2012) a streamfunction 9(z,θ) such that

1
RE

∂9

∂θ
=W,

∂9

∂z
=−V. (2)

Here θ is the latitude in radians, z is the depth, RE is Earth’s
radius, v and w are the meridional and vertical velocities and
xw and xe the western and eastern boundaries in zonal direc-
tion. Following the definition, there are two convenient ways
of computing global 9 in geopotential coordinates:

9(z,θ)=9(z,θr)+

θ∫
θr

RE

xe∫
xw

w(x′,θ ′,z)dθ ′dx′ (3)

or

9(z,θ)=−

z∫
−H

xe∫
xw

v(x′,θ,z′)dz′dx′. (4)

Here θr is the reference latitude. For global meridional over-
turning circulation (MOC) computations it is the southern-
most latitude of the Antarctic coast, where 9(z,θr)= 0. For
regional MOCs, like the Atlantic MOC (AMOC), θr is any
convenient latitude where 9(z,θr)= 0 should be provided.
For this, the Eq. (4) is usually used. In this equation the
boundary condition is naturally taken into account by inte-
grating from the bottom z=−H(x,θ). Note that both ways
of computation are equivalent because the full velocity vector
is divergence-free. In the following we discuss details of both
methods of computation on unstructured meshes. Method A
(Eq. 3) involves vertical velocities and is more straightfor-
ward. Method B (Eq. 4) is based on horizontal velocities and
is slightly more complicated.

Geosci. Model Dev., 13, 3337–3345, 2020 https://doi.org/10.5194/gmd-13-3337-2020



D. Sidorenko et al.: Computing streamfunctions on unstructured meshes 3339

Figure 1. Horizontal schematic of (a) median-dual control volumes and the (b) edge-based structure. In FESOM2, scalar quantities and
vertical velocity are at vertices (blue circles), while the horizontal velocities are at triangle centroids (green circles). The median-dual control
volume around vertex v1 is bounded by segments (gray lines) connecting the centers of neighbor triangles with midpoints of edges. Edge e
in (b) is characterized by its vertices v(e)= (v1,v2) and cells c(e)= (c1,c2) with c1 on the left. The edge vector le connects vertex v1 to
vertex v2. The edge cross vectors dec1 and dec2 connect the edge midpoint to the respective cell centers.

3.1 Method A

In FESOM2, the vertical velocity is conservatively remapped
from vertices to cells using

wkc =
∑
v∈v(c)

wkv/3, k 6=Nc, wNcc = 0, (5)

where v(c) is the list of vertices of triangle c and Nc is
the number of the bottom level on triangle c. Indeed, it is
easy to prove that

∑
vAkvwkv =

∑
cAkcwkc for FESOM2

discretization, so that the vertical (across level surface) trans-
port is preserved. Using triangles is more convenient in FE-
SOM2 because bottom depth is constant on triangles. This
remapping is not required in ICON-Ocean and MPAS-Ocean
where the bottom depth is specified at scalar locations.

We introduce a set of latitude bins (θi,θi+1), θi = θ0+

i1θ , i = 0, . . .,Nθ , covering the ocean domain. The com-
putational procedure is straightforward and is illustrated
schematically in Fig. 2.

– For each bin i find the list of triangles c(i) with cen-
troids in these bins. They will be partly masked by bot-
tom topography in deep layers, and we will formally
write this list as c(ki), adding a layer index k. Subse-
quent computations are over triangles and levels, so that
only c(ki) is needed.

– Compute 1ψki as

1ψki =
∑
c∈cki

wkcAc, (6)

Figure 2. Schematic of binning. Circles correspond to triangle cen-
troids. Bins (here B1, B2 and B3) are given by selected latitude
lines. A triangle is in a bin if its centroid is in this bin. Triangles
with centroids in dark blue, light blue and green fit in bins B1, B2
and B3, respectively.

where cki is the list of triangles, the centers of which are
in bin i at level k.

– Compute the meridional overturning streamfunction

9ki =

i∑
j=1

1ψkj . (7)

The procedure as written is strictly applicable in the case
when level surfaces are fixed except for the surface. For z∗

vertical coordinates or for other options where level surfaces
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are changing only slightly around their mean positions it can
still be used in most cases. It can be readily augmented with
a vertical remap to fixed levels by considering that the differ-
ence in transports (wkc−w(k+1)c)Ac is linearly distributed
within the layer in the case when layers do not disappear, and
level surfaces do not outcrop and stay at fixed depths where
they cross topography. The method B should be used in more
general cases.

Generally 1θ should be taken about the same or larger
than the typical size of triangles. The triangles that are
counted as belonging to a bin are not necessarily confined
to this bin, and the total area occupied by them differs from
the bin area. However, there generally are sufficiently many
triangles in each bin, and one gets a smooth 9kj despite
these effects. The procedure can be improved by conserva-
tive remapping into bins, which might be needed on coarse
meshes. One may always check the bin attribution effect by
repeating computations with smaller 1θ . We also note that
for instantaneous vertical velocities the procedure may result
in 9 different from zero at the surface. It will become zero
only upon sufficient averaging, which removes transient be-
havior of the surface.

The computations presented here can be generalized to
some other sets of binning. Any sufficiently smooth scalar
quantity defined at vertices or triangles can be used to in-
troduce a set of bins. For example, being limited to the N
Atlantic subpolar gyre, one may ask where the AMOC is
forming using bins in mean sea surface height or barotropic
streamfunction (see, e.g., Katsman et al., 2018).

In the following we present an example showing differ-
ences between computations using different bins in 1θ . For
this, FESOM was configured on a mesh with resolution vary-
ing from a nominal 1◦ in the interior of the ocean to ∼ 1/3◦

in the equatorial belt and ∼ 24 km north of 50◦ N. We run
the model for 1 year starting from climatology and compute
the MOC from the annually averaged velocity. Because of
starting the model at rest and a short period of averaging we
expect ∂η/∂t 6= 0, where η is the sea surface height. This,
however, shall not affect the presented results. Figure 3 de-
picts the simulated global MOC, which is expressed by the
basin-wide, mid-depth cell of ∼ 20 Sv at 40◦ N and the bot-
tom cell, induced by the circulation of the Antarctic Bottom
Water with a maximum of 10 Sv. Bins with 1θ = 0.125◦,
which are finer than the nominal resolution, have been used
for computing the streamfunction. Differences between com-
putations using different bins in 1θ are shown in Fig. 4. Us-
ing the coarsest bin size of 4◦ the difference in MOC reaches
locally above 5 Sv. As one would expect, decreasing the size
of bins leads to convergence towards the solution obtained
with the finest bin size of 1θ = 0.125◦. We see that using
bins of 1θ = 0.25◦ is already sufficient in this case because
the mesh contains only a few triangles that are smaller than
the bin size.

Figure 3. Global meridional overturning circulation (MOC) stream-
function including the eddy-induced transports. Method A was used
for the computation. The streamfunction depicts a canonical pattern
as known from the literature with a maximum of 20 Sv at 45◦ N.

3.2 Method B

Here the horizontal velocities are used. We select a set of
latitudes θi . The steps of the procedure are as follows.

– For each i, draw a line θ = θi , and find a set of edges
crossed by this line, as shown schematically in Fig. 6.
For this, cycle through all edges, picking up those that
satisfy the condition (θv1 − θi)(θv2 − θi) < 0, with θv1

and θv2 the latitudes of edge vertices. To avoid situations
when the line passes exactly through the mesh vertex, a
random noise of small amplitude is added to the origi-
nal θi before edge e with vertices (v1,v2) is tested. The
schematic in Fig. 6 shows that the actual line through
which transport is computed is a broken line composed
of vectors (dec1 ,dec2) related to the crossed edges. For
a triangular C-grid discretization, one will deal with
transports directly through the edges. The caveat in this
case is that some of the crossed edges will be hanging
and not contributing to the broken line. They are ex-
cluded by noticing that they have vertices that are en-
countered only once in the union of vertices of crossed
edges. On hexagonal C grids the procedure needs to deal
with edges of dual triangular mesh. We denote the set of
edges forming the broken line around θ = θi as e(i).

– The flux associated with the edge is given by the expres-
sion for Fe above. The question now is the orientation
of edges. This question is trivially solved for each “e”
by taking Fe if θv1−θi > 0 and−Fe otherwise. It corre-
sponds to keeping the normals to segments oriented so
that transports are from the “northern” side of the bro-
ken curve. On a triangular C grid, the edge normal vec-
tors used to introduce edge velocities can be selected as
turned 90◦ in the positive direction from the edge di-
rection. This will allow the orientation problem to be
solved in the same way.
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Figure 4. Differences in MOC computed with method A and using
bins 1θ = 4◦, 2◦, 1◦, 0.5◦, 0.25◦ (from top to the bottom) relative
the MOC computed with1θ = 0.125◦. Evidently there is a conver-
gence with decreasing bin size.

– Since each of segments (dec1 ,dec2) belongs to a par-
ticular cell, vertical integration is trivial for fixed level
surfaces. If level surfaces are moving, the fluxes (trans-
ports) through the faces associated with segments are
conservatively interpolated to the desired system of lev-
els assuming a linear distribution within model layers.
In particular, the new system of levels can be specified
in terms of potential density, with the result being the
streamfunction in density coordinates. For each level

Figure 5. Panel (a) shows the MOC computed using 1000 equally
spaced density levels varying from 1027.5 to 1037.5 kg m−3.
Panel (b) shows the difference in MOC if 72 unequally spaced ver-
tical levels after Megann et al. (2010) are used.

the contributions from edges e ∈ e(i) are summed to get
a streamfunction at this level and the latitude θi .

Note that the set of intersected edges may be ordered ar-
bitrarily; the computation relies on the orientation of edges
with respect to lines θ = θi . This is the reason why the search
for intersected edges remains relatively fast even on very
large meshes. Furthermore, it needs to be done only once
for a particular mesh. Similarly to method A, computations
can be generalized to any set of lines, in particular to isolines
of mean sea surface height or a barotropic streamfunction. In
both methods we introduce masks if computations need to be
confined to a particular basin.

Using this method we computed the streamfunction us-
ing the discrete spacing of 1θ = 0.125◦. The difference to
the streamfunction computed by method A is illustrated in
Fig. 7. The discrepancy between both methods is caused by
the difference of attribution of the ocean volume to θi . This,
as shown in Fig. 7, can lead to a differences exceeding locally
1 Sv. These differences are not the errors but uncertainty in
the interpretation (see further).

If the modeled fluxes have been remapped onto the desired
set of vertical levels as, for instance, prescribed density lev-
els, method B can be directly used for computing the MOC
for a new vertical coordinate system. Figure 5 depicts the
MOC computed using the σ2 (density referenced to 2000 m)
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Figure 6. Schematic of edge search method. The gray line L inter-
sects edges depicted with arrows that show their orientation. The
set of segments drawn to centroids from the centers of intersected
edges forms a broken line connecting land at the left to land at the
right where exact expressions for fluxes are available in FESOM2.
The broken line formed by the intersected edges will be taken on
triangular C grids, and on hexagonal C grids it will be composed
of edges of primary hexagonal mesh. The set of intersected edges
may stay disordered; only edge orientation with respect to the lineL
should be known. The latter is positive if the latitude of the first edge
point is larger than that of L and negative otherwise. The transport
through L is the transport through the associated broken line.

coordinate in vertical. For computing the streamfunction in
density coordinates, we used 1000 equally spaced σ2 lev-
els varying from 1027.5 to 1037.5 kg m−3. The resulting
MOC resembles that of generally known pattern from litera-
ture, with less expressed Deacon cells related to z-coordinate
streamfunction. The result is sensitive to the selection of
density bins, as illustrated in Fig. 5b where the difference
is presented with computations relying on the density lev-
els of Megann (2018). This study used 72 unequally spaced
density classes spanning the range 30.0< σ2 < 37.2 kg m−3

and used the logarithmic scale for densities higher than σ2 >

35.0 kg m−3 to better represent the deep and bottom waters.
Thus, due to the different sampling the difference in the equa-
torial overturning of the surface waters reaches ∼ 3 Sv for
30< σ2 < 35.0 kg m−3 and is even larger for the circulation
cell associated with the Antarctic Bottom Water. We con-
clude that different or not-detailed-enough selection of den-
sity levels may result in the small-scale recirculations in the
diagnosed MOC. However, this difference is not an error but
attribution uncertainty created by arbitrariness in the selec-
tion of density levels.

Note that the diagnostic of MOC in density coordinates
can be also made in the same manner as method A. For this,
the horizontal divergence needs to be remapped conserva-
tively into density bins. From the horizontal divergence we
then (1) diagnose the diapycnal velocity and (2) use it in
method A.

4 Barotropic streamfunction

As follows from the equation for elevation, time mean ver-
tically integrated horizontal velocity U is divergence-free,
∇

∫ η
−H

udz=∇U= 0; i.e., it can be written in terms of the

Figure 7. Differences between computations of MOC using merid-
ional (method B) or vertical (method A) velocities. The discrepancy
between techniques may result in differences of more than 1 Sv.

barotropic streamfunction 9 as

U=−∇ × (9ez). (8)

This streamfunction gives vertically integrated transport be-
tween two points at the surface.

4.1 Computations through binning

The barotropic streamfunction is more difficult to compute
because binning has to be done in two directions. We intro-
duce first a set of lines φ = φj , where φ is the longitude and
φj is the set of equally spaced longitude values over the basin
of interest. As a first step the set of broken lines associated
with each straight line φ = φj is found. As the next step, ver-
tically integrated transports associated with the segments of
broken line are computed. The final step is further binning of
edges and associated transports into equally spaced latitude
intervals (θi,θi+1). Transport (and hence a streamfunction)
at each bin can be then computed by summing contributions
going from the southern boundary where 9 is set to zero.

This procedure can potentially be more noisy than compu-
tations of MOC and may benefit from a conservative remap
of the contributions from the segments in the second binning
step (the number of segments in final bins is not necessarily
large, in contrast to computations of meridional overturning).

According to the above procedure we computed the
barotropic streamfunction using 1θ and 1φ = 0.25◦. Con-
sidering that the procedure requires a 2-fold loop for
(1θi,1φj ) in the case of large meshes and small bins, it
can become computationally heavy. The result is illustrated
in Fig. 8a and depicts reasonable structure of the main gyres
with transports of 160 and 70 Sv across Antarctic Circumpo-
lar Current (ACC) and Gulf Stream, respectively.

Fig. 8b and c show the differences between the stream-
functions if bins of 2 and 1◦, respectively, are used. As ex-
pected, the largest differences occur along the main gradients
and reach above 5 Sv along the ACC front. As in the case
with the MOC we note that these differences are not the er-
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Figure 8. (a) The barotropic streamfunction computed using 1θ
and 1φ = 0.25◦. Panels (b) and (c) show the differences in the
cases 1θ = 1 and 2◦, respectively.

rors but uncertainty created by arbitrariness in the selection
of bin size.

4.2 Computations through velocity curl

FESOM2, as its predecessor, uses implicit time stepping for
the internal mode. The already available solver and routines
need to be only slightly adjusted to compute the barotropic
streamfunction 9 in the case when no-slip boundary condi-
tions are applied. Taking curl of the equation defining9, one
gets

19 = ζ,ζ = ez · (∇ ×U). (9)

In FESOM the discrete ζ is located at scalar points (at ver-
tices), so modifications of the sea surface height solver to

solve the above equations are indeed elementary. The diffi-
culty in formal application of this approach is that the equa-
tion above needs to be solved in a multiply-connected do-
main with the Dirichlet boundary conditions provided on the
periphery of each island and continent. Although these con-
ditions can be formally provided by drawing lines connecting
the islands and computing transports through the associated
broken lines, this is tedious enough, especially when mesh
resolution is high (and there are many islands). In the case
of no-slip boundary conditions, circulations along each is-
land are identically zero, and the equation above can be for-
mally solved with the Dirichlet boundary condition on the
southern boundary and the von Neumann boundary condi-
tion ∂9/∂n= 0 (n is the normal to the boundary). Although
this condition does not ensure that 9 is constant over the pe-
riphery of any island, our experience with FESOM1.4 is that
it works well enough for practical purposes.

If we integrate the equation above over a scalar control
volume (in FESOM2 scalar points are natural locations for
relative vorticity ζ and streamfunction), we get∑
e=e(v)

[−(ez×dec1) · ∇9kc1 + (ez×dec2) · ∇9kc2 ] =∑
e=e(v)

[dec1 ·Uc1−dec2 ·Uc2]. (10)

The contributions from edges on boundaries here are one-
sided, including only segments that are wet (the first in the
list in the case of FESOM). This automatically takes into ac-
count that there are no contributions from the boundary, as
is the case for the no-slip boundary conditions. The opera-
tor on the left-hand side in the case of FESOM is, up to the
absence of depth weighting, the same as the part of oper-
ator used to compute the elevation, so the implementations
is straightforward in the code (less so for postprocessing).
A clear drawback of this procedure is that it is not applica-
ble for partial-slip boundary conditions (it can be generalized
but will become too complicated). Since the methods based
on bins was found to perform reliably, the curl-based method
presents largely a historical interest.

5 Technical realization

The FESOM 2.0 source code is available at https://github.
com/FESOM/fesom2 (last access: 8 July 2020). It is written
in Fortran 90 with some C/C++ code for providing bindings
to some of the third-party libraries. The code employs the
distributed memory parallelization based on Message Pass-
ing Interface (MPI) to run on HPC systems. The presented
diagnostics have been computed using Python routines that
are part of the FESOM 2.0 code distribution. For comput-
ing the MOC in z coordinates, Python routines require ei-
ther vertical or horizontal velocities to be stored as wk,v or
(u,v)k,c, where k, v and c denote the layer, vertex or element
indices, respectively. This is the default output provided by
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FESOM. For computing the MOC in density space, the index
k refers to a density bin and wk,v (is then diagnosed from the
horizontal divergence within the bins) or (u,v)k,c denotes
the transport through this bin below the element c. Trans-
ports within the density classes are instantaneously computed
by FESOM and stored with the desired frequency if option
ldiag_dMOC is activated. For the sake of better subsampling,
the number of density classes for computing transports shall
be sufficiently large. This, however, can make the remapping
of transports onto density bins computationally heavy. Our
experience shows that instantaneous remapping of modeled
fluxes onto density classes results in a ∼ 25 % slow down
of the code if 80 density classes are used. For this reason
ldiag_dMOC is switched off per default.

For postprocessing in Python, a combination of dask and
xarray is used for reading a 3D field (if, for example, the
mean over several timesteps or years is required). The MOC
calculation itself happens using the data that are located in
memory. One should have, of course, a sufficient amount of
memory installed on the post processing machine. Our ex-
perience shows that 200 GB is enough to compute MOC for
a mesh with ∼ 23 million surface vertices. For a mesh with
∼ 1.3 million surface vertices and 49 vertical levels it takes
about 7 s to compute a global MOC using 91 latitudinal bins.
For the largest mesh we have tested in FESOM so far (23
million surface vertices) and 80 levels in vertical, the same
computation takes about 7 min.

Computation of the barotropic streamfunction is currently
implemented offline, and from our experience it is slow be-
cause of loops along vertical and zonal directions are re-
quired. Hence we plan to implement the computation of the
barotropic streamfunction following the philosophy of the in
situ computations (see, e.g., Woodring et al., 2015).

6 Discussion

The general idea of the simple procedures described above is
the use of transports as they are defined in an unstructured-
mesh model, avoiding interpolation from an unstructured to
a structured mesh. The diagnosed quantities such as merid-
ional and barotropic streamfunctions rely on the continuity
equation, which is satisfied by the model only in a certain dis-
crete sense. Interpolation destroys this sense, requiring cor-
rections and introducing interpretation errors related to these
corrections. In practice the interpretation errors are signifi-
cant, being on the level of sverdrups for the meridional over-
turning as illustrated in Sidorenko et al. (2009), hampering
discussions of MOC variability.

The algorithms above rely only on transports as they are
defined in models and use conservative interpolation only
in the vertical direction if required by a specified system of
levels. We emphasize that the algorithms described are still
sensitive to parameter choices and thus contain interpreta-
tion uncertainty. In each case there is some sensitivity to how

bins or vertical levels are selected. In method B the straight
line θ = θi can be considered as centered in the respective
bin; however the broken line drawn around the straight line is
not necessarily centered within a bin. Drawing other possible
broken lines in the bin is generally possible and can be pro-
posed as a method to estimate this uncertainty. However, we
would argue that such uncertainty is intrinsic to the diagnos-
tics we are willing to compute. The true computation must
rely on transport strictly consistent with model discretization
to avoid errors, and such transports are defined at irregular lo-
cations that generally do not lie on lines of latitude or longi-
tude. A set of bins proposes some interpretation of integrated
transports that is free of horizontal interpolation. Any attempt
to interpolate may create new uncertainties instead of making
the analysis more accurate. These “attribution” uncertainties
have to be kept in mind especially in situations where small
variability in MOC is the subject of analysis. Our experience
thus far with the methods described above is that the com-
puted patterns of MOC and the barotropic streamfunction are
sufficiently smooth.

7 Conclusions

We describe a set of simple procedures to diagnose the
meridional overturning and barotropic streamfunctions in-
tended for unstructured meshes and requiring no interpola-
tion of model output to regular meshes. We give application
examples and discuss uncertainties involved. The procedures
are described for FESOM2, but their adaptation for other dis-
cretizations (MPAS or ICON) is straightforward. Our expe-
rience using them indicates that they create much fewer dif-
ficulties with interpretation of model results than all our pre-
vious approaches based on interpolation.
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