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Vegetation type is an important predictor
of the arctic summer land surface energy
budget

A list of authors and their affiliations appears at the end of the paper

Despite the importance of high-latitude surface energy budgets (SEBs) for
land-climate interactions in the rapidly changing Arctic, uncertainties in their
prediction persist. Here, we harmonize SEB observations across a network of
vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-
partitioning analysis identifies vegetation type as an important predictor for
SEB-components during Arctic summer (June-August), compared to other
SEB-drivers including climate, latitude and permafrost characteristics. Differ-
ences among vegetation types can be of similar magnitude as between vege-
tation and glacier surfaces and are especially high for summer sensible and
latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean
values exceed 0 Wm−2) relative to snow-free and -onset dates varies sub-
stantially depending on vegetation type, implying vegetation controls on
snow-cover and SEB-flux seasonality. Our results indicate complex shifts in
surface energy fluxes with land-cover transitions and a lengthening summer
season, and highlight the potential for improving future Earth system models
via a refined representation of Arctic vegetation types.

As the Arctic warms at a fast pace above the global average1,2, changes
to a broad range of biogeophysical variables are being reported and
projected3,4. These changes include increases in rainfall, permafrost
temperatures and permafrost thaw4,5, declines in ice mass, snow
thickness and -spatial extent3,4, as well as complex changes in the
composition, structure and function of Arctic vegetation, including
shrub abundance, plant height and vegetation productivity3,6–10.

These changes impact climate dynamics at local to global scales,
through various land-atmosphere feedbacks4,11 that are mediated by
the land surface energy budget12,13 (SEB). Simply, the SEB is defined
with the most relevant SEB-components:

Rnet = SWnet + LWnet =H+ LE+G+M ð1Þ

where Rnet is the net radiative energy absorbed (or lost) by the surface
and SWnet and LWnet are surface net shortwave and longwave irra-
diances. H is the sensible heat flux, LE is the latent heat flux (excluding
latent heat of fusion, which is separately denoted by “M”) and G is the

ground heat flux through snow, ice or soil (all units in W m−2, Supple-
mentary Table 1)13–15.

Despite their importance, uncertainties in SEB-components per-
sist in high-latitude climate projections, specifically in the case of
sensible and latent heat fluxes16. These turbulent fluxes can directly
feed back to Arctic biophysical variables by affecting near-surface
atmospheric temperature and humidity14.

The magnitude and seasonality of SEB-components depend on a
complex interplay of drivers, such as vegetation type, snow cover, soil
and permafrost characteristics, topography, and meteorological con-
ditions including cloud cover11,13. However, to date, a quantitative
understanding of the importance of vegetation type compared to
other drivers of the Arctic SEB is missing11,15,17. Land surface compo-
nents in current Earth systemmodels often represent Arctic vegetation
by only a single or few plant functional types (PFTs)18,19, despite the
notable diversity thereof20. Previous observational studies demon-
strate that Arctic vegetation types can influence SEB-components,
including latent and sensible heatfluxes11,15,21–27. However, these studies
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either focus on qualitative descriptions of conditions at different sites,
or only cover limited geographic extents.

Therefore, here, we provide a quantitative, circumpolar assess-
ment of the observed SEB over treeless land >60°N in the time period
1994–2021 and compare the predictive skill of vegetation type with
other important SEB-drivers related to climate, topography, snow
cover, permafrost characteristics and cloud cover (see Supplementary
Table 1 for a full list of SEB-drivers identified in this study through a
systematic literature review). Specifically, we harmonize in situ
observations from regional and global monitoring networks28–36

(number of sites: 64, number of site-years: 652; Supplementary
Tables 2, 3). Using literature-based site descriptions, we classify the
vegetation type at each site according to the categories of the Cir-
cumpolar Arctic Vegetation map (CAVM20), the most thematically
detailed classification currently available at the circumpolar scale37.
These CAVM classes describe barren complexes (≤40% horizontal
plant cover), graminoid tundra, prostrate dwarf-shrub tundra, erect-
shrub tundra and wetland complexes20. Additionally, our data con-
tained sites classified as glacier and boreal peat bogs, the latter of
which occur south of the Arctic tree line but largely lack tree cover
(Supplementary Fig. 1–3). For each site, we derived additional climatic
and biophysical SEB-drivers using spatial data products (Supplemen-
tary Fig. 4).With thesedata,wequantify themagnitude and seasonality
of surface energy fluxes and compare the relative importance of
vegetation type and other SEB-drivers for explaining variations in SEB-
patterns. We especially focus on the summer season (June–August),
which is when local controls by the land surface are expected to be
more important compared to the winter season27,38.

Results
Importance of vegetation types for the terrestrial Arctic SEB
We use a variance partitioning analysis to compare the ability of
15 selected SEB-drivers (Supplementary Table 1) to predict summer
meanmagnitudes of the surface energy fluxes Rnet, H, LE and G (Fig. 1;
vegetation subset of data excluding glacier). This variance partitioning

method allows us to account for the statistical confounding of pre-
dictors by discerning variance in surface energy fluxes explained
jointly or independently by different drivers (see Methods).

We show that vegetation type is an important predictor of sum-
mer surface energy flux magnitudes. This importance is specifically
pronounced for H and LE (Fig. 1b, c) for which vegetation type explains
on average 56.3% (range: 53.8–58.8%) and 71.7% (range: 61.4–81.9%) of
variance, respectively.

For G (Fig. 1d), vegetation type is ranked among the top three
predictors (average explained variance 31.7%); after landscape-scale
dominant vegetation (‘CAVM type’; 40.6%) and bioclimatic
subzone (‘CAVMsubzone’; 39.1%). TheseCAVM20 -derived variables are
based on satellite-observed reflectance (including the normalized
difference vegetation index, NDVI20) and Arctic phytogeographic
zones in combination with summer land surface temperatures,
respectively (Methods).

For Rnet (Fig. 1a), latitude and snow cover duration are the most
important predictors, whereas vegetation type shows intermediate
importance. However, results from a supplementary analysis with
normalized fluxes (i.e., daily mean fluxes divided by daily maximum
potential incoming shortwave radiation; Methods) show that vegeta-
tion type again ranks among the three most important predictors for
Rnet (Supplementary Fig. 5), together with bioclimatic subzone and
landscape-scale dominant vegetation. The predictive ability of vege-
tation type for normalizedfluxes ofH, LEandG is similar to that of non-
normalized fluxes (Supplementary Fig. 5). Vegetation type is among
the top three predictors for normalized SWnet (n.SWnet) and even the
most important predictor for normalized LWnet (n.LWnet). Vegetation
type is also an important predictor of albedo and surface temperature
(Tsurf), which are directly related to SWnet and LWnet

14 (Supplemen-
tary Fig. 5).

Magnitude of the terrestrial Arctic SEB across land cover types
Using a linear mixed-model analysis (Methods), we estimate the mean
(±95% confidence interval) surface energy fluxes for the terrestrial

Fig. 1 | Relative importance of 15 drivers of the surface energy budget (SEB) for
average summer surface energyfluxmagnitudes atnon-glacier sites.Bars show
the mean (bar height) and range (lines for each bar) of explained variance (%)
averaged across all possible models with 2 predictors for each SEB-driver and
corresponding summer magnitudes of surface energy fluxes (Wm−2): (a) Rnet: net
radiation, (b) H: sensible heat flux, (c) LE: latent heat flux, (d) G: ground heat flux.
SEB-drivers: Vegetation type (dark green): local-scale, in situ vegetation type; CAVM
type (green): landscape-scale, dominant vegetation type (surrounding area with
radius of 500m); CAVM subzone (light green): bioclimatic subzone; Permafrost
extent (light blue): permafrost spatial extent; Permafrost ice content (grey): per-
mafrost ground ice content; Temperature (red): mean annual air temperature;
Summer warmth (dark orange): summer warmth index; Continentality (orange):

Conrad’s continentality index; Precipitation (light purple): mean annual precipita-
tion; Snow amount (dark purple): mean annual snow water equivalent; Snow
duration (purple): median annual snow cover duration; Cloud cover (light orange):
mean cloud cover; Cloud temperature (yellow): mean cloud-top temperature;
Latitude (dark blue): latitude (WGS84); Altitude (light blue): mean altitude
(surrounding area with radius of 500m; see Methods and Supplementary Table 1).
n: averagenr. of site yearswith averagenr. of sites in parentheses. Results are based
on the vegetation subset of our data (excluding glacier sites): nr. of sites: 31, nr. of
site years: 234, period: 1994–2021.We repeated the analysis with additional surface
energy fluxes, including normalized fluxes expressed as percentage of maximum
potential incoming shortwave radiation (indicated with “n.”-prefix in Supplemen-
tary Fig. 5). Source data are provided as a Source Data file.
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Arctic (including vegetated and glacier sites) in summer (June–August)
and across the entire year (Table 1). We find that vegetation type has a
significant relationship with the mean magnitude of H, LE, SWnet and
LWnet in summer (“Effect significance” in Table 1). At the yearly time-
scale, we find a statistically significant relationship of vegetation type
with Rnet (Table 1). For other surface energy fluxes including H and LE,
available data is incomplete at this timescale, which hinders a proper
assessment of their yearly magnitude and of the SEB closure (Sup-
plementary Discussion).

Using a post-hoc analysis of the linear mixed-model results
(Methods), we test the pairwise differences of summer surface energy
flux magnitudes among vegetation types. We find strong differences
for H, LE and LWnet among vegetation types, which are of similar or
even higher magnitude than differences between glacier and vegeta-
tion types (Supplementary Table 4). For example, for summer LE, the
strongest difference (P-value < 0.001) is found between barren tundra
(mean estimate = 0Wm−2) and boreal peat bog (mean estimate = 75
Wm−2). For summer H, almost equally strong differences (P-value <
0.05) are found between barren tundra (mean estimate = −18Wm−2)
and erect-shrub (mean estimate = 38Wm−2) as well as prostrate-shrub
tundra (mean estimate = 39Wm−2), respectively. For summer LWnet,
we again find the strongest differences between barren tundra (mean
estimate = −71Wm−2) and erect-shrub tundra (mean estimate = −29
Wm−2; P-value < 0.01). Most significant pairwise differences among
vegetation types include comparisons to either barren or boreal peat
bog and differences among prostrate-shrub tundra, erect-shrub tun-
dra and wetlands are not or only marginally significant (Table 1; Sup-
plementary Table 4).

The ratio of H to LE (i.e., the Bowen ratio) in summer is >1 for
prostrate-shrub tundra, erect-shrub tundra and wetlands (Bowen
ratio = 1.6, 1.5 and 1.1, respectively), whereas it is <1 for graminoid
tundra, boreal peat bog and barren tundra (Bowen ratio = 0.6, 0.1 and
<0, respectively; Bowen ratios calculated from summer H and LE
values of Table 1).

In a supplementary analysis with normalized fluxes and the
vegetation data subset only (excluding glaciers, Supplementary
Table 5),wefind that vegetation type effects onHand LE are significant
for each summer month (June–August). For other surface energy
fluxes,wefind that effect significance changes throughout the summer
season; for example, vegetation type is significantly related to albedo
and Rnet in June and July, respectively, and to G in August (Supple-
mentary Table 5).

Seasonality of the Arctic SEB across vegetation types
The cumulative summer energy budget depends on both the magni-
tude and the seasonality of SEB fluxes. In the Arctic, the seasonality of
SEB fluxes is largely governed by the seasonal changes in incoming
radiation, temperature, cloud cover and associated melt and onset of
snow cover15,38. To assess the role of vegetation type for the seasonal
change in SEB-flux magnitudes, we quantify the timing of SEB-flux
‘summer-regimes’ relative to the timing of the snow-free date in spring
and the snow-onset date in autumn39,40. Specifically, we characterize
the typical seasonal development of mean daily surface energy fluxes
for different vegetation types and glacier sites (Fig. 2, Supplementary
Fig. 6) using a subset of the data covering the recent two decades
(Methods).Wedefine the summer regime for Rnet, H, G, and Tsurf as the
time period when daily mean values exceed 0Wm−2 and 0 °C, respec-
tively. For albedo, we define the summer-regime as the time period
whendailymean values are below themeanof the yearlyminimumand
maximum (Methods). Finally, we compare the timing of the summer-
regime period of Rnet, H, G, Tsurf and albedo to the timing of MODIS41-
observed spring snow-free date and autumn snow-onset date aggre-
gated for each vegetation type (Fig. 3).

We find that for Rnet, H and G, across vegetation types, transitions
into the summer-regime occur significantly earlier than the spring Ta
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snow-free date (mean day of year ± s.d = 151 ± 10; difference in days to
the snow-free date for Rnet: −56± 27; H: −33 ± 18; G: −39 ± 11; Welch t-
test P < 0.05 for all). The start into the summer-regime for Tsurf and
albedo is not significantly different from the snow-free date (Fig. 3).
The timing of the end of the summer-regime is not significantly dif-
ferent from the snow-onset date (meandayof year ± s.d. = 275 ± 10) for
all surface energy fluxes, except G, which drops below 0Wm−2 before
snow cover onset (difference in days to the snow-onset date for Rnet:
−3 ± 7; H: −10 ± 11; Tsurf: 8 ± 21; albedo: 12 ± 8; G: −19 ± 20; Welch t-test
P <0.05 for G).

For Rnet and H, variability among vegetation types is larger for the
start of summer-regime timings compared to the end. Standard
deviations for G show the opposite pattern (i.e., are small at the start of
season and large at end of season; Fig. 3). For H, the range in start of
summer-regime timing relative to the snow-free date is 41 days, with
the earliest occurring in erect-shrub tundra (60 days before the snow-
freedate) and the latest inprostrate-shrub tundra andborealpeatbogs
(20 and 19days before the snow-freedate, respectively). An even larger
range of 74 days is estimated for the timing in Rnet, which occurs
earliest in erect-shrub tundra (108 days before the snow-free date) and

Fig. 2 | Seasonalities of radiation andnon-radiationfluxesof the surface energy
budget (SEB). Surface energy flux values (Wm−2) were averaged for each study site
for each day of year (DOY) across all years available and then averaged (mean ± s.e.)
for each DOY and smoothed (15-day moving average) for each vegetation type.
Average number of site years (n) across all DOY’s and surface energy fluxes, and the
number of study sites (in parentheses) are indicated in the top left corner of each
figure. The area within the vertical gray lines represents the median snow-free
period across the years 2000–2020 (MODIS41), averaged across sites for each
vegetation type. Radiation surface energy fluxes: Rnet (dark blue): net radiation;

SWnet (purple): net shortwave radiation; LWnet (green): net longwave radiation. Non
radiation surface energy fluxes: H (dark red): sensible heat flux; LE (light blue):
latent heat flux; G (yellow green): ground heat flux. Results are based on the data
subset of the period 2000–2021 and excluding barren vegetation type because of
missing Rnet data: nr. sites = 61, nr. site years = 617. See Supplementary Fig. 6 for
seasonality analyses with additional components of the surface energy budget.
Note: flux direction convention is positive away from the surface for heat fluxes
(i.e. H, LE and G). Source data are provided as a Source Data file.

Fig. 3 | Timing of the summer-regime relative to the snow-free period for
selectedfluxes and components of the surface energy budget (SEB).Number of
days difference between the start of the summer-regime period and the spring
snow-free date (left panel, x-axis) as well as between the end of the summer-regime
period and the autumn snow-onset date (right panel, x-axis). The summer-regime
timings are derived from the smoothed seasonalities (mean± s.e., see Fig. 2) of
selected surface energy fluxes (y-axis), for different vegetation types (n = 5 per
surface energy flux), colored dots: prostrate-shrub tundra (light red), graminoid
tundra (yellow green), wetland complex (light blue), erect shrub tundra (green),

boreal peat bog (blue). We excluded latent heat fluxes since they are >0Wm−2 all
year in most cases. Summer-regime is defined as the time when surface energy
fluxes: >0Wm−2, when surface temperature >0 °C, or when albedo<mean of annual
minimum and maximum value, respectively (Methods). Results are based on the
vegetation subset of the data for the period 2000–2021 and excluding barren
vegetation type because of missing net radiation data; nr. sites = 28, nr. site
years = 217. Note: flux direction convention is positive away from the surface for
heat fluxes (i.e. H, LE and G). Source data are provided as a Source Data file.
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latest in boreal peat bogs (34 days before the snow-free date). By
comparison, the ranges in end-timings across vegetation types are
19 days for H and 17 days for Rnet. For G, the range in relative start of
summer-regime timing is 19 days (earliest in prostrate-shrub tundra:
51 days before the snow-free date; latest in boreal peat bogs and erect-
shrub tundra: 32 and 33 days before the snow-free date, respectively),
compared to a 50-day range in end of summer-timing (earliest in
boreal peat bogs: 56 days before the snow-onset date; latest in gra-
minoid tundra: 6 days before the snow-onset date).

Discussion
Our quantitative assessment of surface energy budget (SEB) observa-
tions across the treeless, terrestrial Arctic shows that vegetation type is
a powerful predictor of summer (JJA) surface energy fluxes, especially
for latent and sensible heat fluxes. The results remain robust for nor-
malized surface energy fluxes that are adjusted for potential incoming
shortwave radiation and indicate that differences among vegetation
types can be as significant as differences between glaciated and
vegetated surfaces.

One reason for the strong predictive power of vegetation type
could be that vegetation types reflect integrative proxies of distinct
combinations of environmental conditions that control the SEB,
including temperature, topography, soil moisture, and permafrost
characteristics18–20,26. However, it has also been shown that the CAVM
classes20, upon which our vegetation types are largely based, do differ
in SEB-relevant traits and functions such as vegetation height, pro-
ductivity and albedo25,42, and therefore, causal effects of vegetation
types can also be expected. We argue that it is likely a combination of
both reasons behind the observed predictive power of vegetation
type. Further researchwill be needed to identify the specific vegetation
trait combinations that are most relevant for the SEB in the Arctic,
including traits not represented by the main CAVM classes we used
(Supplementary Discussion), and to better constrain the implications
of changing Arctic vegetation productivity, plant height and shrub
abundance for the SEB6–8. Nevertheless, our results highlight the
potential for improving the predictions of Arctic surface energy fluxes,
specifically of summer latent and sensible heat fluxes, by a more
comprehensive treatment of vegetation types and how environmental
conditions interact with associated vegetation functional traits18,19.

Our variance partitioning analysis also reveals a low predictive
power of cloud cover, which is counter-intuitive15,38, but can be
explained by the persistence of high fractional cloud cover and its
consequent low spatial variability across large parts of the Arctic in
summer43. Therefore, even though cloud cover has a large effect on the
overall surface radiative forcing, it does not explain much variability
among our study sites15,38,43. The relatively small predictive power of
precipitation could be indicative of energy-limited, rather than water-
limited systems44 or be due to the fact that the precipitation regime is
already captured by other variables in our analysis, including vegeta-
tion type11.

Our mixed-model analyses indicate significant statistical rela-
tionships of vegetation type with summer surface energy flux magni-
tudes (Table 1) that are robust across individual summer months for
sensible and latent heat fluxes (Supplementary Table 5, analysis with
latitude-adjusted surface energy fluxes). Interestingly, surface energy
flux differences among vegetation types can be as high or even higher
than among glacier and vegetation sites, especially in the case of
sensible and latent heat fluxes (Supplementary Table 4).

For example, in the case of latent heat flux, significant absolute
differences between glacier and vegetation types are in a similar range
(38.5–66.8Wm−2) as differences among vegetation types only (range:
28.3–74.9Wm−2; Supplementary Table 4). Highest summer latent heat
fluxes are found in boreal peat bogswhere they are about twice as high
as in Arctic wetlands and shrub-dominated tundra (Table 1), all of
which show sensible heat fluxes of equal or greater magnitude than

latent heat fluxes21,45. Boreal peat bogs are characterized by high moss
coverage lacking stomatal control of water vapor exchange with the
atmosphere46,47. Future changes in peatland cover depend on complex
vegetation-water cycle feedbacks that additionally can bemediated by
permafrost thaw and microtopography45–47. These feedbacks remain
poorly understood, partially because most current coupled Earth
system models lack a representation of peatland functional types46.
Nevertheless, in case that boreal peatlands were to expand further
north into the Arctic tundra with climate warming18, our results sug-
gest a potential shift of surface energy partitioning towards latent heat
flux, with implications for current and future evaporative water loss,
precipitation and soil water availability46.

In the case of summer sensible heat flux, differences between
barren and shrub-dominated tundra are of similar magnitude to dif-
ferences between glacier and other vegetation types (Supplementary
Table 4). Interestingly, barren tundra, similar to glaciers but in contrast
to all other vegetation types, has a negative summer sensible heat flux,
indicating that barren tundra areas are currently a heat sink. Barren
tundra covers around one-fifth of the terrestrial Arctic area20 and is
expected to decrease under Arctic climate warming6, which suggests a
potential positive feedback to climate warming. However, barren
tundra is only covered by one study site in our in situ observations
dataset and generally underrepresented in the surface energy budget
literature (Supplementary Discussion). Therefore, our results need to
be interpreted with caution and further research is needed to assess
potential climate feedbacks with more certainty.

In this study, we synthesize observations on the seasonality of
surface energy fluxes for a consistent classification of vegetation types
across the Arctic. Our results indicate that vegetation types differ in
the seasonal timing of surface energy flux summer-regime start and
end, relative to the spring snow-free and the autumn snow-onset date,
respectively. The timing of snow-cover disappearance in spring and
onset in autumn is a major factor controlling both the SEB15,38,48 and
vegetation activity9,49 in the Arctic. However, vegetation type can also
affect the distribution, trapping and density of snow cover, with
important consequences for snowmelt and snow onset17,39,40, as well as
for carbon35,50,51, water17,52 and energy fluxes17,52. Our results suggest
elevated variability among vegetation types in the estimated start (and
end) dates of net positive Rnet and H (and G) relative to the spring
snow-free (and autumn snow-onset) dates. For example, we show an
estimated start of net positive H relative to the snow-free date that
occurs 40 days earlier in erect-shrub tundra compared to prostrate-
shrub tundra, which could be indicative of erect-shrub vegetation
protruding through the snow cover earlier compared to prostrate-
shrub vegetation40. While erect-shrub and prostrate-shrub tundra
show similar average summer magnitudes in H (Table 1), these tem-
poral differences can have implications for the cumulative sensible
energy flux to the atmosphere48. The nature of multiple interactions
among vegetation types and snow cover is complex and trends in the
timing of snow-free and -onset dates, as well as vegetation phenology
are highly heterogeneous across the Arctic9,10,49. Resolving related
consequences for surface energy fluxes, the soil thermal regime and
permafrost thaw need further and more detailed investigations7,15,17.
We contend that in this effort, the seasonality of surface energy fluxes
is as important as their magnitude48.

Our study highlights important data gaps. Long-term, year-round
SEB data series of Arctic vegetation are still very scarce. Data is often
missing in autumn and winter seasons for many sites (Supplementary
Discussion) and therefore, we could resolve SEB-seasonalities only at
the vegetation-type level (and not study-site level; Methods). Fur-
thermore, year-round turbulent flux measurements (i.e. sensible and
latent heat flux) are especially scarce for all vegetation types53. Finally,
SEB observations for barren tundra are largely missing, while this type
shows largest differences in surface energy fluxes to other tundra
vegetation types in the limited data available for this study.

Article https://doi.org/10.1038/s41467-022-34049-3

Nature Communications |         (2022) 13:6379 5



To conclude, changes in the surface energy budget12,13 lie at the
heart of changes in climate1,4,5 that can affect the composition, struc-
ture and function of Arctic vegetation3,6–10. The Arctic system is highly
sensitive to climate change3,18, exerts key land-feedbacks relevant for
global climate dynamics2,54 and harbors a range of vegetation types
with unique traits including mosses and lichens18–20. For the future, a
widespread redistribution of Arctic vegetation is predicted6,55,56.
Understanding andpredictinghow these changes in turn affect climate
is essential for reducing persisting uncertainties in climate
projections2,16,18. The potentially important but still uncertain role of
Arctic vegetation for climate feedbacks has been highlighted
before18,19. Previous studies have shown that local estimates of surface
energyfluxes are improved if land surfacecomponents of Earth system
models account for differentiated Arctic PFTs at several high-latitude
validation sites and -regions18,47,57. Here, we provide quantitative evi-
dence of the importance of vegetation types for predicting Arctic
surface energy budgets at circumpolar scale and support recent calls
for refined accountingof high-latitude vegetation types and associated
vegetation functions in land surface components of Earth system
models18,19,58.

Methods
Surface energy fluxes and components
In our study, we focused on the circumpolar land north of 60° latitude,
and specifically on the extent of the circumpolar Arctic vegetationmap
(CAVM20, Supplementary Fig. 1–3).We obtained half-hourly and hourly
in situ observations of energyfluxes andmeteorological variables from
the monitoring networks FLUXNET28 (fluxnet.org; FLUXNET2015
dataset), AmeriFlux29 (ameriflux.lbl.gov), AON31,32 (aon.iab.uaf.edu),
ICOS (icos-cp.eu), GEM35,36 (g-e-m.dk), GC-Net33,34 (cires1.colorado.edu/
steffen/gcnet) and PROMICE30; (promice.dk; Supplementary Table 3).
We did not include observations from the Baseline Surface Radiation
Network (BSRN; bsrn.awi.de) and Global Energy Balance Archive
(GEBA; geba.ethz.ch) because they typically lack information on non-
radiative energy fluxes. Finally, we did not include observations from
the European Flux Database Cluster (EFDC, europe-fluxdata.eu)
because these data are largely located outside the domain of the
CAVM20.

We aggregated surface energy fluxes and components (Supple-
mentary Table 1) to daily resolution as follows: (i) we extracted only
directly measured data and excluded gap-filled data by filtering
according to quality information; (ii) we performed a basic outlier
filtering (excluding shortwave and longwave radiation flux values
>1400Wm−2 and in case of incoming/outgoing radiation <0Wm−2,
excluding albedo values <0 and >1, excluding air and surface tem-
peratures < −100 °C; (iii) we converted all times of measurements to
local standard time (i.e. without daylight saving time); (iv) we calcu-
lated daily (i.e. 24 h) mean, minimum andmaximum values for all days
and surface energyfluxes and componentswhere aminimumof 65%of
data was available with a maximum temporal gap of 4.8 h; (v) we
extracted metadata (units, measurement heights, original variable
names, instrumentation) for all sites and variables; (vi) when data for
the same time and location were available from several networks
(partial overlapping of FLUXNET and AON with Ameriflux), we aver-
aged respective daily values across networks; (vii) in case data for the
same time and location were measured by several sensors at one site
(replicated measurements), we averaged across replicates; (viii) we
harmonized units for all variables; (ix) we harmonized the flux direc-
tion convention for non-radiative energy fluxes (i.e. H, LE, and G;
Supplementary Table 1) as „positive away from surface“; (x) we derived
net radiation (Rnet), net shortwave radiation (SWnet), net longwave
radiation (LWnet) and albedo from corresponding daily aggregated
incoming and outgoing shortwave and longwave radiation, respec-
tively, if not otherwise available; (xi) we derived normalized fluxes for
Rnet (n.Rnet), SWnet (n.SWnet), LWnet (n.LWnet), H (n.H), LE (n.LE) and G

(n.G) as the percentage (%) of daily maximum potential incoming
shortwave radiation based on location and topographical conditions59.
The final surface energy budget dataset (named SEB-data hereafter)
consists of daily mean, minimum and maximum values for surface
energy fluxes and components for 64 tundra and glacier sites across
the years 1994–2021 (Supplementary Figs. 1–3; SupplementaryTable 2;
nr. sites = 64, nr. site years = 652).

Drivers of the surface energy budget (SEB-drivers)
We characterized all study sites available in the SEB-data according to
environmental covariates (named SEB-drivers hereafter; Supplemen-
tary Table 1) that potentially have important effects on the magnitude
and seasonality of surface energy fluxes fromancillary geographic data
(Supplementary Fig. 4, Supplementary Table 3). We identified these
relevant SEB-drivers according to our literature synthesis and con-
sequent correlation analysis (Supplementary Discussion, Supplemen-
tary Figs. 7–9).

As the main SEB-driver of interest, we focused on the local-scale,
in situ vegetation type (Vegetation type variable), which reflects the
main classes described in the CAVM20 map (barren complexes, gra-
minoid tundra, prostrate dwarf-shrub tundra, erect-shrub tundra,
wetland complexes, glacier), plus boreal peat bog.

To derive this in situ vegetation type variable, we extracted for
each study site in the SEB-data the vegetation descriptions from ade-
quate literature references (Supplementary Table 2). We categorized
each site’s vegetation according to the most adequate CAVM-class by
using the following decision chain: (i) assign the CAVM-class where
most described species from in situ vegetation descriptions and
Table S1 in ref. 20 are in accordance. Take into account species‘ eco-
logical niche sizes (e.g. stenotopic plants are better indicators than
eurytopic plants); (ii) if there is no species list and/or in case there are
several CAVM candidate classes, take into account the general habitat
and ecosystem descriptions (including community vertical and hor-
izontal structure, soil moisture and acidity, topography); (iii) if there
are still several CAVM candidate classes, take into account the biocli-
matic subzone and evaluate the exact location of the sitewith available
satellite data; (iv) if there are still several CAVM candidate classes,
assign the most dominant CAVM-class; (v) in case of uncertainties,
consult with the study author(s); (vi) If the vegetation is not similar to
any CAVM-class, describe it according to the description of the study
author(s) and/or adequate references (Supplementary Table 2).

This categorization revealed 1 barren tundra site (1 B3), 12 gra-
minoid tundra sites (10 G4, 1 G3 and 1 G1), 3 prostrate-shrub tundra
sites (2 P2 and 1 P1), 4 erect-shrub tundra sites (2 S2 and 2 S1), 8wetland
sites (3 W3, 3 W2 and 2 W1), 33 glacier sites (GL), and three sites that
were not similar to any CAVM-class but clearly identified as boreal peat
bogs (Supplementary Figs. 1–3; Supplementary Table 2).

For each study site in the SEB-data, we extracted the landscape-
scale, dominant vegetation type in the site-surrounding area
(radius = 500m, CAVM type variable) from the raster version of the
CAVM20,60 (Supplementary Fig. 4a; SupplementaryTable 3). Thismap is
a refined version of the widely used original version20,60 and provides
information at 1 km2 spatial resolution and pan-Arctic scale north of
the Arctic treeline20. Compared to the Vegetation type variable, the
CAVM type is based on the analysis of a combination of large-scale
satellite and environmental data, but both variables refer to the same
class definition. The CAVM-classes are based on the plant physiog-
nomy of the zonal vegetation in a given area, analogous to the widely
applied Braun-Blanquet approach for plant communities on the
ground20.

The CAVM types used in this study reflect these main plant phy-
siognomies (plus one glacier class) that are named according to the
following dominant plant growth forms: B: barren and barren com-
plexes (4 sites), G: graminoid tundra (10 sites), P: prostrate dwarf-shrub
tundra (1 site), S: erect-shrub tundra (10 sites), W: wetland complexes
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(3 sites), GL: glacier (30 sites; there are 6 non-Arctic sites in our SEB-
data). A confusionmatrix showing the classification of study sites into
Vegetation type and CAVM type categories is shown in Supplementary
Table 6.

For each study site, we averaged themean annual air temperature
(°C), the annual sumof precipitation (mm) and the annual sumof snow
water equivalent (Snow amount variable, mm; defined as daily pre-
cipitation when daily mean air temperature < =0 °C) across the years
1979-2018. Therefore, we used high resolution downscaled model
output estimates of temperature and precipitation (CHELSA V2.1; „tas“
and „pr“ variables61–63; Supplementary Fig. 4d, e; Supplementary
Table 3).

Using the same air temperature data as above61,63, for each study
site we calculated the average Conrad Continentality Index (CCI64)
across the years 1979–2018. Specifically, we used the formula:

Continentality =
1:7 × ðTmax�TminÞ

sinðφ+ 10Þ � 14 ð2Þ

whereby Tmax and Tmin (°C) refer to the mean air temperature of the
warmest and coldest month, respectively, and φ (radians) refers to
latitude.

Using the same air temperature data as above61,63, for each study
site we calculated the average Summer Warmth Index (i.e. the annual
sum of monthly mean air temperatures above 0 °C; SWI42) across the
years 1979–2018.

For each study site, we extracted the bioclimatic subzone (CAVM
subzone variable) as described in the circumpolar Arctic vegetation
map (CAVM20,60). These five bioclimatic subzones (A-E) and additional
classes for glacier and non-Arctic zones are largely based on a com-
bination of Arctic phytogeographic zones65, dominant growth formsof
plants and summer temperatures66. Hence, these bioclimatic subzones
are generally well alignedwith summerwarmth index (SWI) classes42. A
confusion matrix showing the classification of study sites into Vege-
tation type and CAVM subzone categories is shown in Supplementary
Table 7.

For each study site, we extracted themedian snow cover duration
(Snow duration variable) from satellite-sensed daily snow cover
(MODIS MOD10C141; Supplementary Table 3). Snow duration was cal-
culated for each year as the number of days between the spring snow-
free date (i.e. mean of days of year for last ‚snow‘ day and first “no
snow” day MODIS categories) and the autumn snow-onset date (i.e.
meanof days of year for last “no snow” day and first “snow” dayMODIS
categories). Yearly snowduration, snow-free date and snow-onset date
for each study site were then aggregated by calculating the median
across the years 2000–2020.

For each study site, we extractedmeanannual cloud cover (%) and
cloud-top temperature (°C) frommonthly satellite imaging radiometer
data (“cldamt” and “tc” products; ISCCP-Basic-H series67,68; Supple-
mentary Fig. 4f, g; Supplementary Table 3) and averaged these vari-
ables for each study site across the years 1984–2016.

For each study site we extracted the corresponding permafrost
extent as described in the Circum-Arctic permafrost and ground ice
map69 (NSIDC gdd318_map_circumArctic version 2; Supplementary
Fig. 4b; Supplementary Table 3). This map describes 4 categories of
permafrost extent, based on the percentage of the ground that is
underlain by permafrost. There are additionally 5 separate categories
for glaciers, relict permafrost, inland lakes, oceans and land with no
permafrost. For the Permafrost extent variable used in this study, we
aggregated these categories into the following five classes: continuous
permafrost (C; 90–100% extent; 21 sites); discontinuous permafrost:
(D; 50–90% extent; 5 sites); sporadic or isolated patches of permafrost
(Si; <50% extent; 4 sites), ocean/inland seas (o; 2 sites) and glaciers (g;
32 sites). A confusion matrix showing the classification of study sites

into Vegetation type and Permafrost extent categories is shown in
Supplementary Table 8.

Using the same permafrost data69 (Supplementary Fig. 4b; Sup-
plementary Table 3), for each study site we extracted the corre-
sponding permafrost ground-ice content class: high (h; >20% ice
content; 8 sites), medium (m; 10–20% ice content; 7 sites), low
(l; 0–10% ice content; 15 sites), ocean/inland seas (o; 2 sites), and gla-
ciers (g; 32 sites). A confusion matrix showing the classification of
study sites into Vegetation type and Permafrost ice content categories
is shown in Supplementary Table 9.

For each study site we extracted the average altitude (m a.s.l.),
slope (°) and northness of the aspect (1 if north-exposed, −1 if south-
exposed; derived from the cosine of aspect in radians) in the sur-
rounding area (radius = 500m) from the satellite-sensed digital ele-
vation model raster mosaic at 100m spatial resolution (ArcticDEM:
Arcticdem_mosaic_100m_v3.0; ref. 70; Supplementary Fig. 4c; Sup-
plementary Table 3).

Data analysis
For our analyses, we focused on the surface energy fluxes and com-
ponents net radiation (Rnet, Wm−2), sensible heat flux (H, Wm−2), latent
heat flux (LE,Wm−2), ground heat flux (G, Wm−2), net shortwave radia-
tion (SWnet, Wm−2), net longwave radiation (LWnet, Wm−2), albedo
(unitless), and surface temperature (Tsurf, °C), air temperature (Tair, °C)
and the difference between surface and air temperature (Tsurf-Tair;
Supplementary Table 1).We included albedo andTsurf because they are
directly related to the radiative SEB as follows14:

Rnet = SWinð1� albedoÞ+LWin � εσTsurf4 ð3Þ

where SWin and LWin are the incoming shortwave and longwave
radiation, respectively (Wm−2), ε is the surface emissivity (≅1) and훔 is
the Stefan-Boltzmann constant14. We repeated our analyses for
normalized fluxes of Rnet (n.Rnet), SWnet (n.SWnet), LWnet (n.LWnet), H
(n.H), LE (n.LE) and G (n.G), which are all expressed in percent of
maximum potential incoming shortwave radiation59 (%; Supplemen-
tary Table 1).

We conducted all data processing and analyses using the
R-software version 3.6.071. We analyzed the full SEB-dataset (nr.
sites = 64, nr. site years = 652) and separately a “vegetation” data sub-
set excluding glacier sites (nr. of sites: 31, nr. of site years: 234). Fur-
thermore, we conducted all analyses at the yearly timescale and for the
summer season (JJA; June, July, August), which is when in situ obser-
vations for vegetation sites have more complete data coverage (Sup-
plementary Discussion). Summer is also the time when the SEB is
dominated by absorbed solar radiation, and local controls by the land
surface are expected to be more important than in the winter
season27,38. In the winter season, absorbed solar radiation is negligible
and the SEB is largely influenced by synoptic processes, such as
advection from lower latitudes27,38. We chose to use the standard
meteorological summer season (as opposed to “snow-covered” vs.
“snow-free” season) because (1) the JJA season is largely snow free for
relevant cases (i.e. except glacier sites), and (2) standard seasons are
consistently defined in time; reducing confounding of results due to
seasonal changes in solar irradiance.

We compared the relative importance of SEB-drivers for explain-
ing variance in the surface energyfluxes and components Rnet, H, LE, G,
SWnet, LWnet, albedo and Tsurf. We repeated this analysis for normal-
ized fluxes n.Rnet, n.SWnet, n.LWnet, n.H, n.LE and n.G (Fig. 1 and Sup-
plementary Fig. 5). Specifically, we focused on the importance of the
SEB-driver “Vegetation type” compared with the importance of other
drivers related to landscape-scale dominant vegetation type (CAVM
type), climate (Temperature, Precipitation, Snow amount, Con-
tinentality, Summer warmth, CAVM subzone), clouds (Cloud cover,
Cloud temperature), snow (Snow duration), permafrost (Permafrost
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extent, Permafrost ice content), topography (Altitude) and geographic
location (Latitude). These 15 SEB-drivers were selected based on our
previous literature synthesis and consequent correlation analysis
(Supplementary Discussion, Supplementary Figs. 7–9).

Using the “vegetation” data subset excluding glacier sites (nr. of
sites: 31, nr. of site years: 234), we averaged surface energy fluxes for
each summer season (JJA), year and study site, where at least 80% of
daily measurements were available. To calculate the relative impor-
tance for each SEB-driver, we applied a variance partitioning
method72,73 to predict surface energy flux values averaged for each
study site. Specifically, we used the set of 15 selected SEB-drivers to
build all possible models with 2 predictors (a number high enough to
allow for the pairwise assessment of statistical confounding among
predictors and low enough to avoid model overfitting). For each
model, we quantified the variance explained by each predictor in a
predictor pair when fitted first, when fitted last and when averaged
over all possible orderings in the models. Finally, we averaged the
“first”, “last” and “average” explained variance (%) for each SEB-driver
across all models for each surface energy flux variable. This led to the
testing of 105 unique SEB-driver pairs × 2 predictor orders × 14 surface
energy flux variables = 2940 models for the vegetation data subset.

We estimated the magnitude of the surface energy fluxes Rnet,
SWnet, LWnet, H, LE andG for each Vegetation type at seasonal (JJA) and
yearly timescale (Y) using the full SEB-dataset (nr. sites = 64, nr. site
years = 652; Table 1; Supplementary Table 4).We repeated this analysis
for the monthly aggregated, normalized (i.e. potential incoming
radiation-adjusted59) summer fluxes n.Rnet, n.SWnet, n.LWnet, n.H, n.LE,
n.G, albedo and Tsurf using the vegetation data subset (excluding gla-
cier sites; nr. of sites: 31, nr. of site years: 234; Supplementary Table 5).

In both analyses, we averaged the dailymean values of the surface
energy fluxes for each timescale, year and study site, where at least
80% of days with measurements were available. We then averaged
surface energy flux values across years for each study site and esti-
mated the mean ± 95% confidence interval (CI) as a function of Vege-
tation type by using a linear mixed-model analysis. Specifically, we
modeled the study-site aggregated means of each surface energy flux
as a function of Vegetation type (fixed effect) and the corresponding
data distributionnetwork (i.e. Ameriflux, FLUXNETetc.; randomeffect;
Supplementary Table 2). To compare differences of summer surface
energy flux estimates among Vegetation types, we applied a con-
sequent post-hoc pairwise comparison with bonferroni correction of
significance estimates74 (Supplementary Table 4).

We derived the typical seasonal change of the surface energy
fluxes Rnet, SWnet, LWnet, H, LE and G for each Vegetation type (Fig. 2).
We repeated this analysis for the normalized (i.e. maximum potential
incoming radiation-adjusted59) fluxes n.Rnet, n.SWnet, n.LWnet, n.H,
n.LE, n.G, albedo, Tsurf, Tair and Tsurf-Tair (Supplementary Fig. 6).

Specifically, using data constrained to the years 2000–2021 and
excluding barren vegetation type (B; because of missing Rnet data; nr.
of sites = 61, nr. site years = 617), we averaged the daily mean values of
the surface energy fluxes across all available years for each day of year
(DOY) and study site. In a second step, we grouped study sites by
Vegetation type and derived mean± s.e. for each DOY and surface
energy flux variable. Finally, we smoothed the resulting mean± s.e.
values for each Vegetation type by calculating the centered 15 day
moving average for each DOY (Fig. 2).

We used these smoothed seasonalities for the five Vegetation
types Boreal peat bog, Wetland complex, Graminoid tundra, Erect-
shrub tundra, Prostrate-shrub tundra (excluding Glacier; nr. of sites =
28, nr. site years = 217), to assess the start and the end of the “summer-
regime” period for Rnet, H, G, albedo and Tsurf. In the case of Rnet, H, G
and Tsurf, we defined the summer-regime as the time period where
values exceed 0Wm−2 and 0 °C, respectively. In the case of albedo, we
defined the summer-regime as the period when values fall below the
mean of the yearly minimum and maximum value75,76. We excluded LE

since fluxes are >0Wm−2 all year in most cases. Using this data, we
compared the timing of the summer regime of Rnet, H, G, Tsurf and
albedo to the timing of the snow-free period (Snowduration41) for each
Vegetation type. Specifically, we aggregated the spring snow-free
and autumn snow-onset dates for each Vegetation type and
subtracted these from the start and end of the summer-regime period
of the selected surface energy fluxes, respectively. Finally, we aggre-
gated the start and end of summer-regime timings across Vegetation
types for each selected surface energy flux variable, to test the dif-
ferences in the timing of the surface energy flux summer-regime and
snow-free/snow-onset dates, using corresponding two-sampleWelch’s
t-tests (Fig. 3).

Data availability
Source data are provided with this paper. The complete in situ obser-
vations surface energy budget components dataset (SEB-data), the SEB-
driver dataset, aswell as the literature synthesis dataset generated in this
study have been deposited77 in the PANGAEA database under accession
code: https://doi.pangaea.de/10.1594/PANGAEA.949792. AmeriFlux
data can be accessed at: https://ameriflux.lbl.gov/login/?redirect_to=/
data/download-data/ AON data can be accessed at: http://aon.iab.uaf.
edu/data_access FLUXNET (including GEM and ICOS) data can be
accessed at: https://fluxnet.org/data/download-data/ GC-Net data can
be accessed at: http://cires1.colorado.edu/science/groups/steffen//
gcnet/ PROMICE data can be accessed at: https://promice.org/
download-data/ Circumpolar Arctic Vegetation Map data can be acces-
sed at: https://data.mendeley.com/datasets/c4xj5rv6kv/1 Bioclimatic
subzones can be accessed at: http://www.arcticatlas.org/maps/themes/
cp/cpbz Climate data can be accessed at: https://chelsa-climate.org/
Snow cover data can be accessed at: https://nsidc.org/data/MOD10C1/
versions/6#0Clouddata canbeaccessedat: https://www.ncei.noaa.gov/
data/international-satellite-cloud-climate-project-isccp-h-series-data/
access/isccp-basic/ Permafrost data can be accessed at: ftp://sidads.
colorado.edu/pub/DATASETS/fgdc/ggd318_map_circumArctic/ Altitude
data can be accessed at: http://data.pgc.umn.edu/elev/dem/setsm/
ArcticDEM/mosaic/v3.0/100m/ Source data are provided with
this paper.

Code availability
Code underlying this study is available in a Github repository and can
be accessed at: https://github.com/oehrij/ArcticSEBSynthesis78.
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