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S U M M A R Y 

Automatic detection of seismic events in ocean bottom seismometer (OBS) data is difficult 
due to ele v ated le vels of noise compared to the recordings from land. Popular deep-learning 

approaches that work well with earthquakes recorded on land perform poorly in a marine 
setting. Their adaptation to OBS data requires catalogues containing hundreds of thousands 
of labelled ev ent e xamples that currently do not exist, especially for signals different than 

earthquakes. Therefore, the usual routine involves standard amplitude-based detection methods 
and manual processing to obtain events of interest. We present here the first attempt to utilize 
a Random Forest supervised machine learning classifier on marine seismological data to 

automate catalogue screening and event recognition among different signals [i.e. earthquakes, 
short duration events (SDE) and marine noise sources]. The detection approach uses the 
shor t-ter m average/long-ter m average method, enhanced by a kur tosis-based picker for a more 
precise recognition of the onset of events. The subsequent machine learning method uses 
a pre viousl y published set of signal features (wav eform-, frequenc y- and spectrum-based), 
applied successfully in recognition of different classes of events in land seismological data. 
Our w orkflo w uses a small subset of manually selected signals for the initial training procedure 
and we then iterati vel y e v aluate and refine the model using subsequent OBS stations within one 
single deployment in the eastern Fram Strait, between Greenland and Svalbard. We find that 
the used set of features is well suited for the discrimination of different classes of events during 

the training step. During the manual verification of the automatic detection results, we find that 
the produced catalogue of earthquakes contains a large number of noise examples, but almost 
all events of interest are properly captured. By providing increasingly larger sets of noise 
examples we see an improvement in the quality of the obtained catalogues. Our final model 
reaches an average accuracy of 87 per cent in recognition between the classes, comparable to 

classification results for data from land. We find that, from the used set of features, the most 
important in separating the different classes of events are related to the kurtosis of the envelope 
of the signal in different frequencies, the frequency with the highest energy and overall signal 
duration. We illustrate the implementation of the approach by using the temporal and spatial 
distribution of SDEs as a case study. We used recordings from six OBSs deployed between 

2019 and 2020 off the west-Svalbard coast to investigate the potential link of SDEs to fluid 

dynamics and discuss the robustness of the approach by analysing SDE intensity, periodicity 

and distance to seepage sites in relation to other published studies on SDEs. 

Key words: Machine learning; Arctic region; Computational seismology; Seismic noise; 
Wave propagation; Time-series analysis. 
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1  I N T RO D U C T I O N  

Detecting seismicity in ocean bottom seismometer (OBS) data has 
additional challenges when compared to the seismicity recorded 
on land. In a marine setting a wide range of signals not encoun- 
tered on land is present (e.g. ship noise, mammal calls and ocean 
current tremor). In addition, the general level of ambient noise 
is much higher. In the low frequency band (0.05–0.1 Hz), persis- 
tent signals are related to Rayleigh waves created by ocean surface 
waves interacting with both shallow and deep ocean floor (pri- 
mary and secondary micro seismic peak, e.g. Sutton et al. 1965 ; 
Barstow et al. 1989 ; Hilmo & Wilcock 2020 ). In the higher fre- 
quency band (above 1 Hz), noise can be generated by underwater 
currents (e.g. St ähler et al. 2018 ; Ramakrushana Reddy et al. 2020 ; 
Essing et al. 2021 ), marine mammals vocalizations (e.g. McDon- 
ald et al. 1995 ; Soule & Wilcock 2013 ; Løviknes et al. 2021 ), active 
seismic exploration and marine traf fic, especiall y on shipping routes 
(Hildebrand 2009 ). Spurious signals caused by electronic malfunc- 
tion, mass centring and tilt correction for broadband sensors also 
generate unwanted signals on the seismogram (Sutton & Latham 

1964 ). 
Additionally, there is a type of signal reported from OBS data 

that often outnumber the recorded earthquakes by a large margin. 
These signals consist of a short duration, high amplitude pulses with 
no discernible seismic phases and have been referred in literature 
as short duration events (SDE). Some studies associate SDEs with 
fluid migration and sedimentary fracturing processes in shallow 

sediments (e.g. Tary et al. 2012 ; Hsu et al. 2013 ; Batsi et al. 2019 ). 
Ho wever , what exactly is at the origin of SDEs remains a matter of 
debate (Tary et al. 2012 ). An interesting observation comes from the 
re vie w of the currently available SDE studies, namely the ubiqui- 
tous use of either manual picking or classical shor t-ter m/long-ter m 

average (ST A/LT A) ratio described by Allen in 1982 (e.g. Buskirk 
et al . 1981 ; Sohn et al . 1995 ; D ́ıaz et al . 2007 ; Embriaco et al. 2014 ;
Franek et al . 2014 ; Ugalde et al. 2019 ; Sgroi et al . 2021 ). 

The problem of microseismicity detection has been studied in 
great detail over several decades and the non-e xhaustiv e list in- 
cludes methods based on: energy-ratios (e.g. Allen 1982 ; Baer & 

Kradolfer 1987 ), autoregression modelling (e.g. Sleeman & van Eck 
1999 ), statistical parameters of the signal (e.g. Saragiotis et al. 2004 ; 
Baillard et al . 2013 ), fuzzy logic theory (e.g. Chu & Mendel 1994 ), 
shallo w neural netw orks (e.g. McCormack et al. 1993 ; Gentili, & 

Michelini 2006 ), cross correlation (e.g. Molyneux & Schmitt 1999 ; 
De Meersman et al. 2009 ) wavelet transforms (e.g. Anant & Dowla 
1997 ; Bogiatzis, & Ishii 2015 ; Mousavi et al. 2016 ) or combinations 
of methods (e.g. Gelchinsky & Shtivelman 1983 ; Diehl et al. 2009 ; 
Nippress et al. 2010 ). Many of these approaches are sensitive to 
the high noise level which is a case for a marine setting (Withers 
et al. 1998 ; Mousavi et al. 2016 ; Guan & Niu 2017 ). Other, such 
as polarity analysis (e.g. Vidale 1986 ; Jurkevics 1988 ), rely on the 
knowledge of the horizontal component geographical orientation 
which not al wa ys can be established for OBS data. Network based 
methods cannot be deployed to systematically detect SDEs since 
their signal is typically seen only locally on individual stations and 
not across a network. Impulsive nature of the SDEs makes the de- 
tection using relati vel y simple ST A/LT A possible and justified in 
the past studies, however the detector itself does not allow to sep- 
arate SDEs from other signal sources. Constructing reliable event 
catalogues that discriminate between earthquakes and SDEs from 

ST A/LT A alone is challenging and require manual verification of 
the entire data set or specific time intervals of interest (e.g. Meier 
et al. 2021 ; Jeddi et al . 2021 ; Domel et al. 2022 ). The need of reduc-
ing the amount of manual processing makes SDEs an interesting 
case study for the classification problem now commonly addressed 
by the use of machine learning. 

Recent years led to a rapid development of the earthquake de- 
tection and phase picking methods based on deep learning (e.g. 
Mousavi et al. 2020 ; Ross et al . 2018a , b ; Zhu & Beroza 2018 ). 
Many of these methods rely on the training of the correspond- 
ing models using very large databases (thousands of examples and 
more) of manually curated earthquakes. Several such models exist 
for land recordings (e.g. M ünchmeyer et al. 2022a ), and in some 
scenarios they can be applied to OBS data without retraining (Chen 
et al. 2022 ). Ho wever , differences in the noise sources and levels can 
lead to a poor performance of the land-based earthquake detectors 
in marine records (we demonstrate the performance of popular ma- 
chine learning models on our data in the text S1 in the electronic 
supplement). 

When it comes to the recognition of other signals, such as SDEs, 
the detection and classification problem remains underdeveloped. 
ST A/LT A method can be fine-tuned to detect SDEs but still either 
misses signals at high detection thresholds or contains false detec- 
tions upon sensitive tuning due to the abundance of stochastically 
varying over time noise in marine settings (e.g. Tary et al. 2012 ; 
Batsi et al. 2019 ; Ugalde et al . 2019 ; Domel et al. 2022 ). The num-
ber of false detections in the catalogues created with this approach 
can outnumber the signal of interest by orders of magnitude and 
require time-consuming quality control, which is simply not feasi- 
ble for large data sets. Pre viousl y described machine learning based 
approaches could not be used yet for SDE detection, as no large 
enough, curated SDE catalogues exist for model training. Mod- 
els specifically trained for earthquake detection consider SDEs as a 
noise and do not trigger on them (see electronic supplement). More- 
over, a careful comparison between the signals from different data 
sets would need to be made to properly define the common charac- 
teristics of SDEs that still can vary in between the publications. 

Super vised machine lear ning-driven approaches based on the 
Random Forest classifier (Breiman 2001 ) have shown over the years 
to be highly efficient in the recognition of different types of sig- 
nals, ranging from earthquakes to volcanic tremors, avalanches, 
and landslides (e.g. Hibert et al. 2017 , 2019 ; Provost et al. 2017 ; 
Chmiel et al. 2021 ; Wenner et al. 2021 ). These methods usually rely 
on curated databases of events to extract the necessary amount of 
information that would allow the separation between distinct cat- 
egories of signals. Compared to the mentioned deep learning ap- 
proaches, Random Forest can provide similar or even better results 
with dozens to hundreds of examples to train from per signal type 
(Hibert et al. 2017 , 2019; Provost et al. 2017 ). This makes it well 
suited to microseismic studies, where there is a need of recogniz- 
ing new signals with a limited set of examples to train from. It is 
also shown to work well in finding rare events of interests in very 
large data sets dominated by noise or superfluous signals (Wenner 
et al. 2021 ). To our knowledge, Random Forest has not yet been 
tested in marine seismological records. 

Here, we propose a new approach based on the Random Forest 
supervised machine learning algorithm that reduces the amount of 
data processing and manual verification needed compared to manual 
screening of ST A/LT A detections. The aim of the study is to test 
whether the method introduced in Provost et al. ( 2017 ) and Hibert 
et al. ( 2017 ), for rockfalls, landslides and volcanic earthquakes on 
land is suitable for classifying earthquakes, SDEs and noise present 
in marine seismograms. We use data from six OBSs deployed in 
2019 to study microseismicity and seafloor seepage off the west 



Event recognition in marine seismological data 591 

c  

f  

m  

s  

O  

t  

v  

c  

m  

o  

i

2

2

A  

S  

t  

s  

a  

s  

s  

a  

T  

b  

i  

S  

t  

b  

a  

(  

t  

2
 

a  

t  

e  

o  

h
 

g  

w  

o  

t
 

(  

o  

p  

s  

a  

F  

a  

h  

t  

J

2

E

M  

r  

m  

h  

(  

a

S

S  

g  

(  

e  

s  

e  

v  

f  

e

U

I  

o  

r  

h  

e  

a  

E  

t  

a  

a  

n  

r
 

i  

m  

o  

p  

n  

n

3

3

W  

d  

a  

S  

a  

t  

t  

u  

p  

(  

S  

a  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/589/7199654 by Alfred-W

egener-Institut fuer Polar- und M
eeresforschung - Bibliothek user on 16 N

ovem
ber 2023
oast of Svalbard (B ünz 2023a ). We show the initial training process
or a new data set that relies on preparation of a small number of
anual examples. We study the trained model performance on one

tation and subsequently progress with the data processing on other
BSs, extending the training data set to properly accommodate

he variation of observed noisy signals. We discuss the observed
ariation in the method performance and provide the metrics of the
lassification accuracy where feasible. Finally, we demonstrate the
ethod v alidity b y using the trained model to obtain a catalogue

f SDEs on all OBS stations and briefly discuss their periodicity,
ntensity and potential link to the gas seepage sites in the area. 

 DATA  

.1 Deployment 

s part of a study on seafloor seepage dynamics off the west coast of
valbard (B ünz 2023a ), we deployed seven long-term OBSs along

he length of Vestnesa Ridge (Fig. 1 ) to monitor potential micro
eismicity. We positioned most devices within an area of a known,
ctive methane seepage on the ridge crest (OBS25-29), with two
eismometers located further away: one of them at the ridge bend
eparating western and eastern part of Vestnesa ridge (OBS-24) and
nother at the south-easter n ter mination of the structure (OBS-30).
hree of them (OBS25, 28 and 29) surrounded a seabed pockmark
roadly investigated due to repeated methane release observations
n the water column (e.g. Panieri et al. 2017 ; Himmler et al . 2019 ).
tations in the pockmark area were separated by 800–900 m (around

he pockmark), up to 2–2.5 km (OBS-26 and OBS-27). The distance
etween OBS-24 and the closest station (OBS-26) was 14.8 km,
nd for station OBS-30, the distance from OBS-29 was 18.3 km
Fig. 1 ). The e xperiment be gan in early July 2019 and ended with
he successful recovery of all instruments in August 2020 (B ünz
023b ). 

Deployment by free fall took place from H/V Helmer Hanssen
t water depths of roughly 1200 m (Table 1 ). To establish their
rue location on the seafloor, we conducted an active source seismic
 xperiment, acquiring sev eral seismic lines within the area. Most
f the OBSs drifted in either NW or NE direction with an average
orizontal drift of 223 m. 

Each OBS recorded seismicity using a short-period three-channel
eophone with a corner frequency of 4.5 Hz. Two types of recorders
ere used: KUM ‘6d6’ for OBS-24 and OBS-25, and Geomar ‘Ge-
log’ for the remaining instruments. We set the sampling frequency
o 250 Hz for OBS-24 and OBS-25. 

OBS-24 and OBS-25 recorded a full year of data until July 2020
Table 1 ). Ho wever , we encountered several problems with the data
n other stations. OBS-29 stopped recording after one day of de-
loyment. The data on OBS-26, OBS-27, OBS-28 and OBS-30 was
ampled erroneously at 500 Hz due to an internal error, leading to
 much quicker storage use and shorter duration of the recording.
or OBS-26, OBS-27 and OBS-30 this led to a stop of the record
pproximately 3 months after the deployment (4–7.10.2019). We
ad equipped OBS-28 with a twice as big memory card (128 GB),
herefore its recording lasted roughly twice as long, until middle of
anuary 2020. 

.2 Most fr equentl y observed e vent types 

e  
arthquakes 

ost of the seismicity in the area comes from the nearby oceanic
idges (Fig. 1 , inset). The earthquakes originating from there have
ost of their energy in the frequency range below 10–15 Hz and

ave a P–S phase separation of > 8 s for our station positions
Fig. 2 a). Their duration is relati vel y short (30–60 s on average)
nd there is often a T -wave train visible in the data. 

DEs 

hort duration events in this data set are characterized by a sin-
le, strong impulse with energy from 5 Hz up to 25 Hz and more
Fig. 2 b). P and S phases cannot be recognized. Most of the SDE
vents last about 1–2 s. They occur in groups of several SDEs or as
ingle events (Fig. 2 b). Their relative amplitude can be stronger than
ven the largest of local earthquak es. Unlik e earthquak es, they are
isible mostly only on the vertical channel of the geophone. Only
or the stronger ones, we see energy on horizontal components and
ven hydrophone records in some cases. 

ndesired signals 

n an underwater setting, it is difficult to list all the possible types
f noise present. The most pre v alent one in our case, is most likely
elated to current-induced instrument shaking and is referred to as
armonic tremor (Fig 2 c; St ähler et al. 2018 ; Ramakrushana Reddy
t al. 2020 ; Essing et al. 2021 ). We consider this type of signal as
 noise occurring in repeating patterns lasting up to several hours.
ven though it is usually less prominent from the background noise

han other signals, individual wave ‘packets’ can easily exceed the
mplitude threshold in the ST A/LT A detector. Unlik e earthquak es
nd SDEs, tremors are not observed in hydrophone data. This type of
oise is likely the largest factor in lowering the number of earthquake
ecords (both visible and detected) on different OBSs in this study. 

In addition to this signal, different high-amplitude events can be
ncluded in the noise category. Some of them are related to instru-

entation problems, others to marine mammals, seismic acquisition
r marine traffic and some do not have an explanation and may sim-
ly be stochastic in nature. For the purposes of the study, we do
ot make a specific differentiation between different origins of the
oise and do not try to make different subcategories of it. 

 M E T H O D S  

.1 Detection and extraction of signals for classification 

e are interested in separating local earthquakes from SDEs and
ifferent types of noise present in the data set. We aim to improve
nd build upon the classically used search routine based on the
T A/LT A detector (Allen 1982 ). We do it by using ST A/LT A as
 tool to extract time slices from continuous data and then assign
hem to different classes of events based on their signal characteris-
ics. To account for differences between SDEs and earthquakes, we
sed ST A/LT A detector twice and adjusted the parameters to im-
rove its sensitivity to SDEs (shor t, abr upt signals) and earthquakes
long, more emergent signals). Even with finely tuned settings, the
T A/LT A detector will trigger on noise and other sources of signal,
nd in a typical processing w orkflo w, events of interest have to be
anually extracted. We down sampled all data sets to 50 Hz to

qualize the data from different stations. We used an STA window
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Figure 1. Map of the study area and location of the instrumentation. The triangles represent true ocean bottom seismometer (OBS) positions (after relocation) 
deployed at Vestnesa Ridge. Inset: Overview map of the Fram Strait with location of Vestnesa Ridge, off the west Svalbard margin and major tectonic 
features labelled. Regional bathymetry from the IBCAO (International Bathymetric Chart of the Arctic Ocean) (Jakobsson et al. 2020 ), see Data Availability. 
VR-Vestnesa Ridge; Molloy TF-Molloy Transform Fault; KR- Knipovich Ridge. 

Table 1. Overview of all the stations in the experiment, with their calculated position at the sea bottom, respective water 
depth, duration of the recording, sampling frequency and drift (difference between the calculated and deployed location) with 
its direction. 

Station 
Longitude 

[ ◦E] Latitude [ ◦N] 
Water depth 

[m] 

Data record 
start 

[dd/mm/yyyy] 

Data record 
end 

[yyyy/mm/dd] 
Sampling 

frequency [Hz] 
Drift 

[m]/direction 

OBS-24 6.2790 79.1141 1243 07/07/2019 09/07/2020 250 202/NE 

OBS-25 6.9153 79.0073 1207 07/07/2019 09/07/2020 250 271/NW 

OBS-26 6.8532 79.0258 1230 07/07/2019 07/10/2019 500 286/NW 

OBS-27 6.7899 79.0236 1210 07/07/2019 07/10/2019 500 238/NW 

OBS-28 6.8790 79.0097 1203 07/07/2019 19/01/2020 500 226/NW 

OBS-29 6.9134 79.0150 1223 07/07/2019 08/07/2019 500 238/NW 

OBS-30 7.4681 78.8821 1135 07/07/2019 04/10/2019 500 101/SW 
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length of 0.8 s with an LTA window length of 45 s for earthquakes, 
and an STA window length of 0.35 s with an LTA window length 
of 8 s for SDEs. With the ST A/LT A detection ratio set at 7, we 
ran the detector on the 1 Hz high pass filtered vertical channels 
of the geophones. Each detection was set to end at the ratio of 
1.5 (Fig. 3 b). We selected the lowest possible value of the trigger 
threshold that would not lead to continuous detections of the noise 
of the data set. In the earthquake-adjusted search, we removed all 
the detections with a duration shorter than 4 s (value determined 
empiricall y, Fig 3 a). Conversel y, for the SDE-adjusted search, we 
only kept the detections shorter than or equal to 4 s. Additionally 
in earthquake-adjusted search, to reduce the number of separate 
detections of P and S phases from the same earthquake we merged 
the detections that were less than 10 s from each other. We also 
used a kurtosis-based picker (Baillard et al. 2014 ; Hibert et al. 2014 ) 
to automatically improve the initial onset of all earthquakes found 
in this run. This method relies on the fact that while random noise 
and seismic signal have, statistically speaking, a normal amplitude 
distribution, the change between them does not. By computing a 
characteristic function based on the kurtosis (4th moment) of the 
signal provided by Baillard et al. ( 2014 ), the onset of the event can 
be found. We computed the function in several sliding windows for 
different frequency ranges and then determined the onset from the 
sum of all functions. We used the sliding windows of 1, 2, 3 and 
5 s, and computed characteristic functions in the frequency bands 
of: 1–5 Hz, 5–10 Hz, 10–20 Hz and 20–25 Hz. In our case, the 
picker was used on a window from −10 to + 1 s relative to origi- 
nal pick (window range determined by trial and error; Fig. 3 c). In 
the test we noted that the detection of many earthquakes ended too 
abruptly, hence for each detection, we also calculated a new end 
time based on a mean signal amplitude in the window from the start 
of ST A/LT A detection to 60 s after the pick. When the amplitude 
of the current sample dropped below 1.5 of this mean amplitude 
(for samples after initial detection end), we shifted the end time to 
this position (Fig. 3 d). As the final step, we merged the detections 
from earthquake-adjusted and SDE-adjusted runs and kept only one 
copy of the detection in the case of overlapping. We subsequently 
used the created catalogue to cut the windows around the signals in 
question and use them as an input to the subsequent classification. 

art/ggad244_f1.eps
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Figure 2. Examples of distinct types of events present in data belonging to different classes used in the machine learning classification approach with their 
corresponding spectrograms (window length: 1 s, overlap 90 per cent, Hanning taper). All examples from the vertical channel of a geophone. (a) Local ridge 
earthquake. (b) SDEs. (c) Harmonic tremor. 
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.2 R andom f or est and seismic signal featur es 

fter extraction of each example, we use the Random Forest al-
orithm to differentiate between events of interest and noises. The
mplementation is provided by the scikit-learn python library (Pe-
regosa et al. 2011 ). This approach is based on computing a large
umber (1000 in our case) of decision trees, where each decision
ree takes a random subset of parameters used in training to con-
uct a vote assigning an event to a class (Breiman 2001 ). Based
n the majority of votes from all trees, the final decision of the
utcome class of event is made. We specifically use the approach
re viousl y applied successfull y to classify environmental sources
Hibert et al. 2017 ; Provost et al. 2017 ; Chmiel et al. 2021 ; Wen-
er et al. 2021 ) and volcanic seismicity (Hibert et al. 2014 ; Maggi
t al. 2017 ; Malfante et al. 2018 ; Falcin et al. 2021 ). With the excep-
ion of the number of trees used, we retain the default parameters
f the method provided by scikit-learn (see electronic supplement).
r  
e trained a model with a purpose of recognizing three classes: EQ
earthquakes), SDE and NOISE. 

Super vised machine lear ning algorithms such as the Random
orest require that each event is described by the same features. To
o so, we transform each seismic signal in the data set into an array
f curated features that are designed to extract information that is
imilar to what human operators use in distinguishing between dif-
erent classes of seismic sources. For the features used as an input
or the training, we provided 24 waveform-based features, 17 re-
ated to the frequency content and 17 pseudo-spectrogram features
alculated for single channel data, plus four parameters related to
he polarity computed from all three channels. We followed the ap-
roach and features proposed by Provost et al. ( 2017 ) (excluding the
etwork-based features included there). We worked on the signals
ltered down to 50 Hz sampling rate (Nyquist frequency of 25 Hz)
nd we modified the frequency windows used to calculate the pa-
ameters accordingly. Instead of calculating the features only on the

art/ggad244_f2.eps
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Figure 3. Graphical explanation of the steps taken to obtain detection time windows used later in the classification. (a) An example earthquake on which 
ST A/LT A detector triggered twice, with the first detection removed due to the length s) (b) ST A/LT A ratio for the event in (a) with the thresholds used for onsets 
and terminations of detections used in this study. (c) Time window for the kurtosis-based pick with the final improved onset pick for the remaining detection 
from (a). (d) Time window used to estimate the background amplitude of the signal and adjust the end pick when the ratio drops below certain threshold (1.5 
in this case), with the improved onset pick from step (c) and a new position of the detection end. 
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channel with highest signal-to-noise ratio (SNR), we computed the 
features on three components of each OBS. This gives in total 174 
features computed on single channel data, plus four features using 
three channels simultaneously. We provide the list of features with 
corresponding formulae in Table A1 . 
3.3 Iterative model building 

We manually screened the catalogue to prepare the initial set of 
examples used in training the machine learning classification. From 

all stations, we selected 100 earthquakes representing a class EQ, 
100 SDEs representing a class SDE and 100 examples of different 
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ypes of noise that triggered the ST A/LT A detector that were together
rouped into one class labelled NOISE. We used all the samples in
he training step and assessed the performance of the model on the
ontinuous data detections. We present the results of the training
hase in the form of a confusion matrix (Fig. 4 ). We define an
ccuracy of model as a total number of correct predictions in a
lass di vided b y all predictions in said class. Throughout the text
e also use precision as a measure of the amount of false positive
etections in each corresponding class. We compute it as a ratio
etween correct detections in the class versus the sum of correct
true positive) and incorrect (false positive) detections. In an ideal
odel scenario, all training samples should end up on the diagonal

f the matrix. 

nitial training set—model A 

he initial classification test performed well with only one example
n the entire test data set being mislabelled. This shows that the dif-
erences between types of signals are potentially easily recognizable
ith this approach (Fig. 4 , Model A). Encouraged by the results, we
ecided to check the model performance on a full data set from one
f the stations. Based on the results, we intended to either directly
ransfer the model to analyse the subsequent stations or iterati vel y
ncrease the training data set with incorrectly labelled examples,
etrain the model and then verify how well the model transfers
etween different OBSs. We followed the numbering order of the
tations, starting with OBS-24 and concluding with OBS-30. 

BS-24—model B 

e used the Re vie wed Bulletin of the International Seismological
entre (ISC; www.isc.ac.uk) to list all earthquakes recorded at the
losest land stations on Svalbard and Greenland. This catalogue
ubsequently served as a reference to which we compared the re-
ults obtained from our detector. We downloaded all records of
arthquakes located between 70 ◦N and 90 ◦N in latitude and 25 ◦W
o 40 ◦E in longitude that occurred during the duration of the surv e y.
ot all events seen on land were recorded by the OBS and vice
ersa. We manually verified 206 earthquakes on OBS-24 from the
93 reported in the re vie wed version of the ISC catalogue. Out of
hese 206 earthquakes, our method detected 191 and labelled 181
s an earthquake. All the remaining visible events had a low SNR,
nd it would be impossible to correctly pick P and S phases for lo-
ation purposes. We manually screened 5 months of data to see how
any additional detections were properly labelled as earthquakes.
e found that 117 new earthquakes have been detected (bringing

he total amount of earthquakes to 298), but also 406 detections
abelled as an ear thquake tur ned out to be incorrect (Table 2 ). Due
o the very large number of detections for SDE (16 442) and NOISE
2677) classes, we were not able to check all of them indi viduall y,
ut we observed that while there are some events classified as SDE
hat we consider noise and vice versa, there were no immediately
isible earthquakes that were attributed to these classes. To improve
he model performance, we added the cleanest examples of the dif-
erent classes of events into the training set (137 EQ, 41 SDE and
09 NOISE), and obtained an updated model, which had a slightly
ower accuracy during training (99 per cent for EQ class, 99 per cent
or SDE class, 98 per cent for NOISE class; Fig. 4 , Model B). After
his procedure, we ran the detector again on OBS-24 and ended up
ith 324 correctly identified earthquakes and only 18 false posi-
i ves (caused b y noise) during the entire duration of the experiment
precision of 94.7 per cent; Table 2 ). 

BS-25—model C 

fter using this ne wl y trained model (Model B) on a next station,
BS-25, we observed that new distinct types of noisy signal led

o much a lower accuracy of the approach. While in the subset of
arthquakes seen simultaneously at OBS-24, w e ha ve found no in-
orrectly labelled earthquakes (102 earthquakes seen in total for
BS-25), a large number of false picks of noise (220) led to an

verall precision of 31.7 per cent for this data set (Table 2 ). In an
ffort to train the model to correctly identify wrongly classified ex-
mples, we added all correct and wrong examples from the EQ and
OISE classes to the appropriate groups in the training data set,
ith additional examples of SDEs included as well (Fig. 4 , Model
). We found remarkably similar, high performance in recognition
f all training events compared to previous models, with all SDEs
rom this data set reco gnized properl y. After testing the new model
n continuous data from OBS-25, we again found that providing ad-
itional e vents, specificall y ne w examples of noise from OBS-25,
eads to drastically improved results compared to the first attempt
n this station. This iteration resulted in 98 correctly labelled earth-
uakes (4 seen pre viousl y have been wrongly classified) and 14
ncorrect detections labelled as earthquakes (EQ class precision of
7.5 per cent; Table 2 ). We retained almost all correctly labelled
arthquakes while removing 206 false positive earthquake detec-
ions. 

BS-26—model D 

ue to the overall shorter duration of the OBS-26 data set (roughly
 months in total), we decided to manually verify all detections
nd labels after the classification with the current version of the
odel (Fig. 4 , Model C). We found that 452 earthquakes had a

orrect label, but 2253 noise-type signals were also present in the
Q category (precision equal to 16.7 per cent; Table 2 ). On the
ther hand, we confirmed our observations of correct recognition
etween SDEs and noise. Out of 97 SDE detections, 7 of them were
ncorrectly labelled earthquakes, with 4 additional events difficult
o assign manually (precision equal to 89.8 per cent). We found 452
orrectly marked noise events, with 9 examples of SDEs and only
wo earthquakes in the NOISE class (precision of 97.6 per cent).
ince, we checked all detections on this data set manually, w e w ere
lso able to compute how many true detections for the class we
ctually missed (recall). We use the definition of recall that it is
 ratio between the true positive detections divided by the sum of
rue positive and false ne gativ e detections. The recall value for each
lass on OBS-26 is as following: EQ—98.0 per cent, SDE—90.9 per
ent and NOISE—16.7 per cent). This confirmed our observations
rom previous inspections that almost all earthquakes and SDEs
re being labelled correctly and the only outstanding problem is a
arge number of noisy events that are labelled as earthquakes or
DEs. As with previous stations, we took the v erified e xamples and
dded them to the training data set, providing another iteration of
he model (Fig. 4 , Model D). 

http://www.isc.ac.uk
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Figure 4. Confusion matrices sho wing ho w well the classification algorithm reco gnized e vents used in the training after subsequent additions of new waveforms 
to the training data set. Accuracy given below is the number of correct predictions in each class divided by the total number of predictions assigned to this class. 

Table 2. Performance of the trained models on the continuous data—classifier precision for all events assigned to EQ 

class. 

Model/station 
Correct detections—EQ 

class 
Incorrect 

detections—EQ class 
Precision [true positives/ 

(true positives + false positives)] 

Model A/OBS-24 298 406 42.3 per cent 
Model B/OBS-24 324 18 94.7 per cent 
Model B/OBS-25 102 220 31.7 per cent 
Model C/OBS-25 98 14 87.5 per cent 
Model C/OBS-26 452 2253 16.7 per cent 
Model D/OBS-27 264 562 31.9 per cent 
Model D/OBS-28 346 601 36.5 per cent 
Model F/OBS-30 236 94 71.5 per cent 
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OBS-27 and OBS-28—model E 

Observations up until this point indicated that a relati vel y small 
number of earthquakes and SDEs is improperly classified, even if 
there is a large number of false events in EQ class. Due to the large 
amount of data and detections remaining, we only checked events 
in the EQ class from this point onward. Results for the next two 
stations are as follows: 346 correctly recognized earthquakes and 
601 incorrectly labelled signals (precision of 36.5 per cent) for OBS- 
28, and 264 earthquakes and 562 cases of noise (precision of 31.9 
per cent) for OBS-27 (Table 2 ). After this step, we again provided 
the highest quality examples as an additional input to recompute 
the machine learning model (Fig. 4 , Model E). 

OBS-30–model F 

For the last station (OBS-30), we wanted to test whether the training 
data set is robust enough to be applied on a new station without hav- 
ing any prior knowledge about the types of signals present. For this 
purpose, we removed all examples of signals from OBS-30 present 
in the initial training data set and all subsequent iterations. This 
meant the removal of 19 earthquakes from Model E. There were 
no examples of NOISE and SDE class from OBS-30 used in any 
iteration so far. This final model (Fig 4 , Model F) correctly recog- 
nized 236 earthquakes on OBS-30 while also outputting 94 false 
detections (precision of 71.5 per cent; Table 2 ). Additionally, for 
32 events we had a difficulty in manually assigning them to any of 
the classes. In the final comparison with the ISC land-based detec- 
tions, out of 132 earthquakes listed for the OBS-30 surv e y duration, 
the ST A/LT A detector triggered on 62 of them and the classifier 
subsequentl y correctl y labelled 57. We checked the remaining ISC 

earthquakes listed, and they were either not present in the data at all 
or their quality was too low for further investigation. This concluded 
the training process of the classifier. 
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Figure 5. Recall value of the Random Forest classifier for recognizing events belonging to EQ, SDE and NOISE class for 100 iterations of training and 
validating of the model, when training data set equals: (a) 10 events/class, (b) 50 events/class, (c) 100 events/class, (d) 250 events/class, (e) 500 events/class 
and (f) 750 events/class. The validation of the model is conducted on the remainder of the events from final training data set. Average recall from all iterations 
per class presented in corresponding colour on the right side. The black line shows average values for all classes per iteration and the black number on the right 
total average for all iterations. 
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.4 Performance of the model 

o e v aluate how well the Random Forest algorithm is suited to
eco gnize dif ferent classes of the e vents, we repeated the training
sing 10, 50, 100, 250, 500 and 750 events per each class from all
v ent e xamples used to train final model (Model F). We established
he performance of each attempt using each corresponding model on
he remaining samples from the data set. For each size of training
ata set, we repeated the procedure 100 times and calculated the
v erall av erage recall value and the average recall value per class.
s pre viousl y mentioned, recall informs about the percentage of

he samples from each class labelled correctly by the model (true
ositive rate, sensitivity). 

We also investigated how well the model performs when we have
 training data set with a large difference of event examples per class
i.e. as it is in our case, with strongly overfitted NOISE class). To do
o, we performed two rounds of testing, one in which all classes are
epresented by the same number of examples and one in which the
atio between the samples in each class reflects the ratio of examples
n our final model. We took randomly between 1–30 per cent of all
amples from the final model for each class (which means between
9 and 2337 events for each category) and trained the model while
erifying its recall value on all remaining examples. For classes
Q and SDE this leads to using the same examples multiple times,
ince the final model contains 1110 and 1175 examples for these
lasses, respecti vel y. The data set for the final model contains 5640
xamples for NOISE class. For each percentage, we repeated the
raining 100 times and averaged the results. In the second scenario,
e repeated the same training process, but we used the percentage
o  
f all samples belonging to their respective class. This means taking
etween 11 and 333 examples for the EQ class, between 12 and 352
xamples for the SDE class and between 56 and 1692 examples for
he NOISE class. This way, the ratio between the samples in each
lass remained constant and equal to the ratio in the final model. 

.5 Importance of features 

ith all the signal features provided, it is important to determine
hich of the selected features were most important during the clas-

ification of events. The Random Forest approach allows to cal-
ulate the importance of each feature, obtained by comparing the
erformance and the error of the model with given features ran-
omly permuted for all the examples versus the classification result
ithout the permutation (Breiman 2001 ). Arbitrary swapping of
alues of the selected feature allows to estimate how critical this
arameter was in achieving the final result. We used the built-in
eature importances function within the scikit-learn library for this
urpose (Pedregosa et al. 2011 ). 

 R E S U LT S / B U I L D I N G  A  R E L I A B L E  

L A S S I F I C AT I O N  M O D E L  

.1 Testing of the final model (model F) 

he results of repeated training using increasingly larger number
f events show that even with only 10 events per class the average
ecall reaches 68 per cent (Fig. 5 a). Gradually increasing a number
f examples leads to less varying results per iteration and overall
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Figure 6. Recall value of the Random Forest classifier in reco gnizing dif ferent classes with the increase in the number of samples included in the training data 
set depending on whether the training data sets for each class are equal (i.e. balanced model, a) or some classes are overfitted (as NOISE in the final model, 
i.e. unbalanced model, b). Training was done on a given percentage of balanced or unbalanced data set and verified on the remainder of all samples. For each 
percentage, the model was trained 100 times and recall values w ere a veraged. Shaded areas denote standard deviation obtained from 100 iterations of training 
and validation. 
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higher recall value in each of the classes (Figs 5 b–f). The SDE 

class seems to be the least dependent on the number of samples 
needed for training, reaching a recall value of 86 per cent already 
with 100 examples (Fig. 5 c), and increasing only by 2–88 per cent 
recall value when 750 examples were used (Fig. 5 f). On the other 
hand, the NOISE class requires more examples overall in training to 
reach a similar performance (86 per cent recall value at 750 events 
used for training) (Fig. 5 f). The results for the EQ class indicate that 
with 100 events the recall value is already at 81 per cent (Fig. 5 c), 
there is no larger increase in the performance of the model and the 
overall recall value at 750 examples is high (85 per cent), but the 
lowest of all the classes (Fig. 5 f). The final average recall value for 
all classes is equal to 87 per cent at 750 examples per class used in 
training, but it is already at 85 per cent with much smaller subset of 
250 events per class (Figs 5 d and f). 

When using the same number of events per class for the train- 
ing process, the recall value in detecting earthquakes and SDEs is 
already high with 1 per cent of total examples used for each class 
(80 and 85 per cent, respecti vel y, F ig. 6 a), w hereas the NOISE class 
benefits the most on the increase in the number of samples used for 
training (accuracy of 78 per cent at 1 per cent of total data used, 90 
per cent when using 30 per cent of total training samples available, 
Fig. 6 a). The recall values of classes EQ and SDE began to decrease, 
when the model was trained with the same examples used multiple 
times. The entire training data set consists of 7925 examples (1149 
EQ, 1250 SDE and 5526 for NOISE; Model F in Fig. 4 ). When 
we use the percentage of all 7925 examples to train the model and 
compute the recall, the number of examples for EQ and SDE class 
becomes greater than the actual number of examples available for 
these classes at the value of around 15 per cent. Above that number, 
an increasing number of examples from the EQ and SDE classes is 
used more than once for the training. 

Testing the model with the ratio between classes similar to the 
one for the entire training data set we have leads to a very high 
recall value for NOISE class that remains constant regardless of 
the number of samples used ( ca . 95 per cent from 1 to 30 per cent 
of NOISE class examples used, Fig. 6 b). Due to the much lower 
numbers of examples used initially for classes EQ and SDE (only 
11 and 12 examples at 1 per cent of each class, respecti vel y), the 
initial recall value is low (25 per cent for earthquakes, 45 per cent 
for SDEs, Fig. 6 b). It increases steadil y, howe ver, reaching 62 per 
cent for EQ class and 69 per cent for SDE class when 30 per cent 
of examples from each class are used (Fig. 6 b). 

4.2 Importance of features for the final model 

The ten most important features during the training of the final 
model are presented in Fig. 7 (all the features with their corre- 
sponding importance can be found in a text file provided with the 
electronic supplement to this article). Seven out of ten features are 
from the vertical channel of the geophone. Out of them, four of the 
five most important are related to the kurtosis of the signal computed 
for different frequency ranges. The remaining one from the top five, 
on the third place, is the frequency with the maximum energy in the 
frequency spectrum. Three of the top ten features are related to the 
duration of the signal (on the seventh, eighth and tenth place), and 
all of them have equal values, since the signal in each sample is cut 
into even-length windows on all channels. The remaining features 
on the list are the root-mean-square (RMS) difference between the 
decreasing part of the signal and the straight-line approximation (on 
the sixth place) and the energy in the first quarter of frequency band 
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Figure 7. Top 10 most important features from the final trained model with their corresponding importance, based on the mean and the standard deviation 
of accumulation of the impurity decrease within each tree in the trained model (1000 trees used), obtained by randomly permuting values of all features and 
comparing results with the results without permutation (Pedregosa et al. 2011 ). 
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rom 1 Hz to the Nyquist Frequency (25 Hz in this case) on one of
he horizontal channels (on the ninth place). 

 D I S C U S S I O N  

.1 Training process for the new model and its 
ransferability between data sets 

he detection and classification approach presented in this study
imed to improve the processing of OBS data sets which, due to
he much higher noise levels than in data recorded on land, poses
 more difficult challenge. To properly classify different types of
ignals, we needed to ensure that the time windows extracted using
n ST A/LT A detector correctly encapsulated and separated different
ypes of signals. By testing and adjusting the parameters of the
T A/LT A detector separately for SDEs and earthquakes, we were
ble to capture two types of events with the same method, but at
he expense of the overall detection number. We found that SDEs,
ue to their high SNR, are usually correctly detected and extracted
rom the continuous data, but earthquake e xtraction prov ed more
roblematic. 

Adjusting ST A/LT A parameters alone does not ensure a proper
etection of full earthquake signals. We often observed a presence of
wo separate detections for P and S phases and in the case of weaker
ignals, the ST A/LT A detector responded only to the S phase, usually
he strongest part of a w aveform. It w as therefore important to adjust
he onset of each detection to properly capture the full signal if the
etection contained an earthquake. Using the kurtosis-based picker
esigned to recognize slowly emergent signal in a noisy data set
Baillard et al. 2014 ; Hibert et al. 2014 ) proved satisfactory for this
urpose. While not al wa ys the exact onset of the P -wave arrival was
elected, the Random Forest classifier very rarely had a difficulty
ith correctly labelling an event as an earthquake even with an only
artially present P -wave phase (Fig. 8 ). 

The initial verification of our approach using a curated catalogue
f events (Model A, Fig. 4 ) showed that the method is very well
uited to the problem and features computed from the extracted win-
ows provide enough information to discriminate between earth-
uakes, SDEs and noisy signals. The test on the continuous data
et from OBS-24 using publicly available ISC catalogue showed
hat 95 per cent of the detections made by the ST A/LT A detector
ere assigned correctly to the EQ category and the remaining earth-
uakes listed in the catalogue were either not present or too weak
o be recognized by automatic detection. We also found that SDE
lassification is working correctly, but we were not able to manually
erify all of the detections due to the large size of the resulting
atalogue. 

This step also made us realize that the data set containing exam-
les of noise is likely lacking examples of man y dif ferent spurious
ignals that we can encounter in the OBS data. These signals can be
ometimes traced to the issues with the instrumentation itself, but
an be related, for example to the ocean currents inducing shaking on
he frame (e.g. St ähler et al. 2018 ; Essing et al. 2021 ), marine mam-

als (e.g. McDonald et al. 1995 ; Soule & Wilcock 2013 ; Løviknes
t al. 2021 ) or can include seismic operations at sea, which we also
onducted during the first days of the surv e y. Providing the addi-
ional examples to the model allowed us to not only find 200 more
ocal earthquakes, but also regain high level of correct detections in
Q class (94.7 per cent, Table 2; Model B, Fig. 4 ). 
We repeatedly observed that applying the Random Forest model

rained on one set of data to a new OBS requires retraining to
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Figure 8. An example of the correct classification of an earthquake recorded on OBS-30 by the final model (Model F) for a slice that do not encompasses the 
ear thquake wavefor m fully. Blue outline shows the par t of the signal used in the classification, which lacks a majority of the P-phase within. 
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achiev e high accurac y in the earthquake detections, but our clas- 
sifier correctl y reco gnizes between earthquakes and SDEs. On all 
subsequently trained and verified iterations of the model (Model C- 
F, Fig. 4 ), new types of noise examples were present and labelled as 
earthquake signals. We attribute these issues to the random nature 
and/or very localized origin of the noise and the differences in the 
signal characteristics between the different stations (separated by up 
to 30 km between the farthest OBS positions). Different recorders 
used in experiment also could have influenced the results. After 
making sure that the amount of improperly labelled earthquakes 
remains small, we found that even with the manual processing 
involved, checking additional few hundreds of examples leads to 
a significant speed-up of the data processing compared to the la- 
borious scanning through the tens of thousands of the ST A/LT A 

detections in the database. As for resulting SDE detections, even if 
the manual verification is still not a feasible task, our observations 
indicate that the resulting catalogue already is a notable improve- 
ment over the ST A/LT A detection studies without any subsequent 
processing steps, which was the routine approach so far (e.g. Franek 
et al. 2017 ; Batsi et al. 2019 ; Domel et al. 2022 ). 

By gradually increasing the number of examples in the training 
set for the NOISE class, we hoped to achieve a high enough level of 
completeness that would lead to a small number of incorrect detec- 
tions for the subsequent OBS stations we checked. While starting 
from station OBS-26, we found a larger number (452, Table 2 ) of 
correctly labelled earthquakes present (OBS-25 had small number 
of earthquakes compared to other data sets; 102, Table 2 ), the over- 
all accuracy of detections when reapplying a model to a new data set 
was decreasing. It is important to mention that each station can pose 
unique challenges. In the example of OBS-26 we found an order of 
magnitude higher number of incorrect detections, which is probably 
explained by the disproportionately large amount of noise on this 
station. We suspect the strength of underwater currents for this OBS 

was much larger than in any other station possibly due to its location 
with respect to the seafloor morphology. For stations OBS-27 and 
OBS-28, a third of detections in the EQ category were retained as 
correct, same as for OBS-25 when using the model without includ- 
ing additional examples for a given station after manual checking 
(Table 2 ). For the last data set (OBS-30), we found that the final 
model (Fig. 4 , Model F), with the five times more examples of noise 
than samples in the other tw o categories, sho ws a significant im- 
provement in the reduction of incorrect detections in EQ category. 
With the precision of 71.5 per cent for EQ class (Table 2 ), the ma- 
jority of distinct types of noise were properl y reco gnized b y this ap- 
proach. We intend to use the final model in future processing of dif- 
ferent OBS data sets to reduce the amount of manual labour needed. 
5.2 Final model performance and its training data set 

The results shown in confusion matrices inform us whether the 
model is well suited to reco gnize e vents using the features provided 
(Fig. 4 ), however by training the model on all examples available, 
these plots do not tell us about the robustness of the model in 
reco gnizing ne w, unknown samples (generalization). Therefore, it 
was important to conduct rigorous testing using e ven, increasingl y 
large training sets and verify the model performance on samples 
of different types of events that were not included in the training 
phase (Fig. 5 ). We see that it takes a small number of 50 examples 
per class to reach the average recall value of 79 per cent and that 
a gradual increase of training sets leads to a smaller performance 
improvement. The recall value of detecting SDEs remains highest 
among all the categories throughout the testing process, which is 
confirmed by the verification of the SDE class content for OBS- 
26. With 750 events per class used for training, the recall value 
of independent recognition of both earthquakes and noise is high 
(85 and 86 per cent, respecti vel y). In the manual verification we 
observed a higher recall in the recognition of earthquakes (with 
only two earthquakes labelled as noise and 452 correctly labelled 
examples of noise in OBS-26), but a lower recall value for the 
recognition of noise (2253 noise examples in EQ category for the 
same OBS). We attribute this discrepancy to a significant portion of 
noise being mislabelled due to the data set not fully capturing the 
broad range of types and features noise that a marine setting can 
exhibit. At this point in the model development, we opted against 
the creation of separate categories for different noise sources. 

By providing more examples for the NOISE class (that has the 
largest expected variability of sources and signal shapes), we at- 
tempted to counteract the generalization of event types in this class 
and enforce correct recognition of most of the noise sources. Train- 
ing with the increased percentage of the overall data set highlights 
that the NOISE class benefits the most with the provision of addi- 
tional samples (Fig. 6 a). The perceived drop of the recall for the 
remaining classes by 15 per cent mark is caused by reusing exam- 
ples in these classes during the testing phase. When we train the 
model keeping the relative ratio between the number of examples in 
each category the same as for the entire, final training data set, we 
see that the recall value in recognizing noise is excellent regardless 
of the percentage of samples used for training (Fig. 6 b). Therefore, 
we believe that when one category consists of a variety of signals 
with different origins, unbalancing the model to compensate for this 
diversity is a valid, but not necessarily the best approach. It would 
be beneficial to spend more time in differentiating between signals 
that obscure the events of interest in OBS data sets and potentially 
train the model using separate categories of different noise types. 
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Figure 9. Time-series of hourly SDE occurrence on OBS stations obtained using random forest classification with Model F. Note the difference in vertical 
axis for OBS-25. The difference in the duration of data sets is explained in more detail in Sections 2 and 3. 
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.3 Most important signal characteristics 

n the recognition of earthquakes, SDEs and noise, the kurtosis of
he signal and signal duration played a key role, judging by their
re v alence in the top ten most important features (Fig. 7 ). This is
xpected, based on observed differences between the different signal
 aveforms generated b y each source, as explained below. Kurtosis

nforms about the deviation of the random variable distribution from
ormal distribution (Hibert et al. 2014 ) and the curve for different
requency ranges will have different shapes depending on the event
ype. We have initially a low amplitude signal (P-phase), followed by
n increase (S-phase) and slow decay for earthquakes that in our data
et usually not exceeds one minute of duration. SDEs on the other
and, generally show sharp spikes with an immediate termination of
he signal and the usual individual duration under 5 s. In the NOISE
e  
lass, we contained an assortment of both longer and shorter events,
ome continuous, emergent signal as in ocean current tremor, but
enerally more varied than two other classes. The differences in their
ength and shape of the kurtosis proved to be significant enough for
 high level of recognition from the remaining two classes. The
mportance of the way in which amplitude decreases towards the
nd of the signal is also reflected by the presence of feature related
o the coda of the signal deviating from the straight line (feature 24
n Table 2; on sixth place in Fig. 7 ). 

SDEs are high amplitude events, with most of their energy in the
pper part of the studied spectrum (10–25 Hz, Fig. 2 ), similar to
remor noise present in the NOISE class. Therefore, the frequency at
hich maximum energy was found (third most important feature,
ig. 7 ), also proved useful in discerning these classes from the
arthquakes, for which we expect highest amounts of energy below
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Figure 10. Average daily rate of SDE occurrence obtained from the Random Forest classification method using the final trained model (model F) for all OBS 
stations used in this study. 

Figure 11. Positions of OBS-25, OBS-26, OBS-27 and OBS-28 at the crest of Vestnesa Ridge with relation to proven, continuous gas seepage sites. Seep 
sites discussed in the text labelled in red with the arrows. Inset shows which part of the map from Fig. 1 is presented here in a greater detail, with positions of 
OBS-24 and OBS-30 further away from seep sites. 
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10 Hz. This differentiation is linked with the energy in the lower 
quarter of spectrum used (1–6.25 Hz in this case), which is also 
present on the list of the most important features (on the ninth 
position, Fig. 7 ). 

6  A P P L I C AT I O N  O F  T H E  T R A I N E D  

M O D E L  O N  S D E  T I M E  S E R I E S  

A NA LY S I S  

With the Model F established to classify between event types with 
high accuracy on all stations, w e ha ve tested the capability of the 
method to build a SDE catalogue useful for subsequent analysis, 
alongside its earthquake detecting capability. Out of a total number 
of 180 000 ST A/LT A triggers on all seven stations of the network, 
model F classified 2374 as earthquakes, almost 73 000 as SDEs and 
the remainder as noise. 

These numbers clearly underline the importance of SDEs in ma- 
rine environments where they can outnumber earthquake detections, 
in our deployment setting by a factor of 30. We present their hourly 
occurrence throughout the duration of the experiment (Fig. 9 ). The 
overall intensity v aries greatl y between the stations, with OBS-25 
having the least amount of the detections (3580—4.9 per cent of 
total SDE count), despite one of the longest duration of record- 
ings. OBS-28 recorded the greatest amount of SDEs total over 
its roughly five-month-long record—16 822 (23 per cent of total 
SDE count). The total detection numbers for remaining stations 
are: OBS-24–16 425 (22.5 per cent of total SDE count), OBS-26–
14 431 (19.8 per cent of total SDE count), OBS-27–12 674 (17.4 
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Figure 12. P eriodograms (po wer spectrum density) plots of hourly SDE occurrences at in vestigated OBS stations. Tw o dashed lines correspond to principal 
lunar semidiurnal tidal component (M2–12.42 hr) and first overtide of M2 component (M4–6.31 hr). 
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er cent of total SDE count), and OBS-30–9032 (12.4 per cent of
otal SDE count). To better reflect the SDE occurrence intensity
cross the stations with different data set lengths, we computed
heir average daily rate of SDE occurrence, which is as follows:
5 for OBS-24, 19 for OBS-25, 155 for OBS-26, 136 for OBS-
7, 85 for OBS-28 and 100 for OBS-30 (Fig. 10 ). SDEs typi-
ally occur in a form of seemingly irregular bursts, separated by
eriods of relative quiescence, with a varying frequency between
tations. 

The OBS data we use for the testing of Random Forest machine
earning approach in a marine environment was collected as part
f a study on fracture-controlled seepage dynamics along Vestnesa
idge (e.g. Singhroha et al. 2020 ; Plaza-Faverola et al . 2015 ). SDEs
ocumented along continental margins globally have been linked
o fluid migration and gas release from the seafloor via cracking of
ubseabed sediment in response to external factors (e.g. tides, e.g.
su et al. 2013 ; Bayrakci et al. 2014 ; Embriaco et al. 2014 ; Hilmo &
ilcock 2020 ; Domel et al. 2022 ). 
The origin of SDEs is a matter of ongoing debate and goes beyond

he scope of the present study. Ho wever , with the classification
pproach presented in this study w e w ere able to quickly produce a
ata set of SDE detections that should be a more accurate depiction
f SDE intensity than unfiltered ST A/LT A picker results utilized
o far (e.g. Tary et al. 2012 ; Batsi et al. 2019 ; Domel et al. 2022 ;
galde et al . 2019 ). The resulting catalogue of SDEs includes six
BS stations distributed at varying distances from gas seepage pits

nd underlying structures of gas migration (Bunz et al. 2012 ; Panieri
t al. 2017 ; Fig 11 ). 
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Preliminary analyses of SDE counts with respect to their distribu- 
tion along Vestnesa Ridge fluid migration system reveal interesting 
observations with implications for advancing knowledge on SDEs: 

(i) We observe the absolute lowest daily rate of SDEs at OBS-25, 
which is the station closest to one of the gas pits in the area ( ca . 
150 m from Seep 1 in Fig. 11 ). OBS-28 located 650 m away from 

the same seep has higher , but lo wer than other nearby stations, daily 
rate of SDE occurrence (85 per day; Fig. 10 ). 

(ii) The two stations with the highest average daily count of SDEs 
(OBS-26 and OBS-27; Fig. 10 ) are located ca . 1200 and 650 m, 
respecti vel y, from another seep site (Seep 2 in Fig. 11 ). 

(iii) Two OBSs located ca . 11 and 14 km west and east from 

the cluster of seeps (OBS-24 and OBS-30, respecti vel y; Fig. 11 ), 
recorded a sustained number of SDEs throughout the experiment 
duration. 

Overall, this data shows that SDE intensity does not necessarily 
increase with the decreasing distance to the active seepage pits. On 
one hand, these observations challenge the perception that SDEs are 
associated with gas bubble rise at the seafloor (e.g. Tary et al. 2012 ; 
Hsu et al. 2013 ; Batsi et al. 2019 ). On the other hand, an increase 
of SDEs in a closed fluid flow system (shallow gas accumulations 
without an active gas release at the seafloor) supports observations 
from piezometer data where sub-seabed excess pore pressures fluc- 
tuate in response to the sea level changes in the region (Sultan 
et al. 2020 ). 

A correlation between SDEs and tidal cycles is partially visible 
in periodograms of hourly counts of SDEs (Fig. 12 ). There are 
visible peaks of the SDE periodicity corresponding to semidiurnal 
tide component M2 (12.42 hr period) in the case of stations OBS-24 
and OBS-26, and potentially a small peak of the first overtide of 
this component (M4–6.21 h period) in the case of OBS-28 (Fig. 12 ). 
Since this group represents the stations both within the area with an 
active seepage (OBS-26 and OBS-28) and away from it (OBS-24), 
no conclusive links can be established between seepage, tides and 
intensity of SDEs for the results of this experiment. 

7  C O N C LU S I O N  

We applied a Random Forest classifier used pre viousl y in seismol- 
ogy on land to recognize signals in marine data from OBSs. We 
focused specifically on recognition of earthquakes and signals re- 
ferred to as short duration events from the noise. These events are 
an interesting case study due to their high incidence rate, relati vel y 
similar characteristic between events, high/signal to noise ratio and 
a pre v alence of ST A/LT A based research with only some degree of 
manual verification in literature. to recognize between earthquakes, 
short duration events and noise present in the data from OBSs. We 
used the set of features pre viousl y tested on seismological data from 

land and found it robust enough to differentiate between the distinct 
classes of events with high accuracy during the training phase. Dur- 
ing the verification on the continuous data sets, we encountered two 
major challenges. First, the resulting earthquake catalogues con- 
tained a large number of non-earthquake events. This is due to the 
high percentage of noise present. We attempted to mitigate this 
by including a progressively larger number of noise examples dur- 
ing the training phase for the noise class. This led to an eventual 
improvement with the percentage of correct earthquake detections 
rising, but not reaching the high recall values suggested by the initial 
testing of the recognition between the classes. The second challenge 
lies in the categorization of noise in a marine realm. Combining dif- 
ferent types of signals into a single NOISE category hampers the 
possibility of applying the same training model to data sets from 

different instruments. This can be potentially solved by creating 
separate categories for noisy signals of different origin (e.g. bottom 

currents, ship noise, instrument vibrations and mammal signals). 
Ov erall, we achiev ed a mean accurac y of 87 per cent for event 

classification (final model; after training using examples from six 
OBS stations). The final results show that the signal characteristics 
that play the most important role in training the algorithm match the 
features we use in visual differentiation of events. Using the final 
iteration of the model we were able to compile a catalogue of 73 000 
SDEs, close to two orders of magnitude larger than the amount of 
SDE examples used for training. With this new catalogue, we stud- 
ied the variability of SDE between the stations during the duration 
of experiment. The data set we obtained shows an apparent relation 
between the daily SDE rate and the distance of active seep pits. We 
also observe some of the same periodic patter ns repor ted from other 
studies about SDEs. This reinforces the approach presented as an 
efficient and potentially more precise method of SDE event detec- 
tion and recognition in the absence of large enough SDE databases 
to train deep-learning models. 

Additionally, this supervised machine learning method can po- 
tentially be used to discern other sources of signal in the marine 
seismological data, such as mammal v ocalizations, v olcanic tremors 
or ship noises. This requires further investigation and compilation 
of a larger database of different types of events to achieve a better 
generalization of the approach. 
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eddi , Z. , Ottem öller, L., Sørensen, M. B., Rezaei, S., Gibbons, S. J. &
Strømme, M. L., 2021. Improved Seismic Monitoring with OBS De-
ployment in the Arctic: A Pilot Study from Offshore Western Svalbard,
Seismol. Res. Lett., 92 (5), 2705–2717. 

urkevics , A. , 1988. Polarization analysis of three-component array data,
Bull. seism. Soc. Am., 78 (5), 1725–1743. 

rischer , L. , Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron,
C. & Wassermann, J., 2015. ObsPy: a bridge for seismology into the sci-
entific Python ecosystem, Comput. Sci. Discov., 8 (1), doi:10.1088/1749-
4699/8/1/014003. 

øviknes , S. , Jensen, K.H., Krafft, B.A., Anthonypillai, V. & Nøttestad,
L., 2021. Feeding hotspots and distribution of fin and humpback
whales in the Norwegian Sea from 2013 to 2018, Front. Mar. Sci., 8,
doi:10.3389/fmars.2021.632720. 
aggi , A. , Ferrazzini, V., Hibert, C., Beauducel, F., Boissier, P. & Amemo-
utou, A., 2017. Implementation of a multistation approach for automated
event classification at Piton de la Fournaise Volcano, Seismol. Res. Lett.,
88 (3), 878–891. 

http://dx.doi.org/10.1785/BSSA07206B0225
http://dx.doi.org/10.1785/BSSA0870061598
http://dx.doi.org/10.1785/BSSA0770041437
http://dx.doi.org/10.1785/0120120347
http://dx.doi.org/10.1785/0120120347
http://dx.doi.org/10.1029/GL016i010p01185
http://dx.doi.org/10.1029/2019GC008349
http://dx.doi.org/10.1007/s11001-014-9227-7
http://dx.doi.org/10.1785/0120140267
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1029/2021GL095241
http://dx.doi.org/10.1029/2020GL090874
http://dx.doi.org/10.1190/1.3205028
http://dx.doi.org/10.1016/j.tecto.2007.01.004
http://dx.doi.org/10.1785/0120080019
http://dx.doi.org/10.1093/gji/ggt436
http://dx.doi.org/10.1785/0220200397
http://dx.doi.org/10.1016/j.jvolgeores.2020.107151
http://dx.doi.org/10.1002/2014JB010990
http://dx.doi.org/10.1002/2017GC007107
http://dx.doi.org/10.1111/j.1365-2478.1983.tb01097.x
http://dx.doi.org/10.1007/s10950-006-2296-6
http://dx.doi.org/10.1002/2017GL073755
http://dx.doi.org/10.1002/2013JF002970
http://dx.doi.org/10.1016/j.jvolgeores.2017.04.015
http://dx.doi.org/10.3354/meps08353
http://dx.doi.org/10.1029/2020GC009085
http://dx.doi.org/10.1016/j.epsl.2013.03.013
http://dx.doi.org/10.1038/s41597-020-0520-9
http://dx.doi.org/10.1088/1749-4699/8/1/014003
http://dx.doi.org/10.1785/0220160189


606 P. Domel et al . 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/235/1/589/7199654 by Alfred-W
egener-Institut fuer Polar- und M

eeresforschung - Bibliothek user on 16 N
ovem

ber 2023
Malfante , M. , Dalla Mura, M., Mars, J.I., M étaxian, J.-P., Macedo, O. & 
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M ünchmeyer , J. et al. , 2022a. Which picker fits my data? A quantitative eval- 
uation of deep learning based seismic pickers, J. geophys. Res., 127 (1), 
doi:10.1029/2021JB023499. 

Nippress , S.E.J. , Rietbrock, A. & Heath, A.E., 2010. Optimized automatic 
pickers: application to the ANCORP data set, Geophys. J. Int., 181 (2), 
911–925. 

Panieri , G. et al. , 2017. An integrated view of the methane system in 
the pockmarks at Vestnesa Ridge, 79 degrees N, Mar. Geol., 390, 
282–300. 

Pedregosa , F. et al. , 2011. Scikit-learn: machine learning in Python, J. Mach. 
Learn. Res., 12, 2825–2830. 
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in a marine setting. The upper plot shows a waveform from the 
vertical channel of a seismometer used for the detection (all meth- 
ods use three-component data). Below presented are characteristic 
functions computed by each approach (Detection, P and S phase 
probability for EQTransformer; P and S phase probability for the 
remaining two). 
FigureS2 . Example 2 of the earthquake detection on data recorded 
in a marine setting. The upper plot shows a waveform from the 
vertical channel of a seismometer used for the detection (all meth- 
ods use three-component data). Below presented are characteristic 
functions computed by each approach (Detection, P and S phase 
probability for EQTransformer; P and S phase probability for the 
remaining two). 
Figure S3. Example 3 of the earthquake detection on data recorded 
in a marine setting. The upper plot shows a waveform from the 
vertical channel of a seismometer used for the detection (all meth- 
ods use three-component data). Below presented are characteristic 
functions computed by each approach (Detection, P and S phase 
probability for EQTransformer; P and S phase probability for the 
remaining two). 
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Table A1. Signal features calculated from the examples used to train machine learning classifier [features calculation following Provost et al. ( 2017 ) and 
Hibert et al. ( 2017 )]. Numbers-channel pairs represent order of the features in the array used for classification. DFT stands for discrete fourier transform. 

Number-seismometer channel Description Formula 

Waveform-based features 
1-Z, 63-Y, 121-X Duration of the signal t j –t i , where t i and t j : start and end of the signal 
2-Z, 64-Y, 122-X Ratio of the max and the mean of the normalized envelope max[e( t )]/mean[e( t )] 
3-Z, 65-Y, 123-X Ratio of the max and the mean of the normalized envelope max[e( t )]/median[e( t )] 
4-Z, 66-Y, 124-X Ascending time/decreasing time of the envelope t max −t i 

t j −t max 
, t max : time of the largest amplitude 

5-Z, 67-Y, 125-X Kurtosis (peakness) of the raw signal m 4 
σ 4 , m 4 : fourth moment, σ : standard deviation 

6-Z, 68-Y, 126-X Kurtosis of the signal envelope see 5 
7-Z, 69-Y, 127-X Skewness of the raw signal m 3 

σ 3 , m 3 : third moment 
8-Z, 70-Y, 128-X Skewness of the signal envelope see 7 
9-Z, 71-Y, 129-X Number of peaks in the autocorrelation function of the raw 

signal 
- 

10-Z, 72-Y, 130-X Energy in the first 1/3 of the autocorrelation function 

T 
3 ∫ 
0 

C( τ )dτ , T : signal duration, C : autocorrelation function 

11-Z, 73-Y, 131-X Energy in the remaining part of the autocorrelation function See 10 
12-Z, 74-Y, 132-X Ratio of the 10 and 11 - 

13–17-Z, 75–79-Y, 133–137-X Energy of the signal in: 1–5 Hz, 5–10 Hz, 10–15 Hz, 15–20 
Hz, 10-Nyquist frequency 

ES i = log 10 

T 
∫ 
0 

y f ( t)dt , y f : filtered signal in the frequency range 

18–22-Z, 80–84-Y, 138–142-X Kurtosis of the signal in: 1–5 Hz, 5–10 Hz, 10–15 Hz, 
15–20 Hz, 10-Nyquist frequency 

see 5 

23-Z, 85-Y, 143-X RMS between the coda of the signal and the straight line 
l ( t ) = Y max—

Y max 
t f −t max 

t

√ 

Y ( t) − l ( t) 
2 
, Y : envelope of the signal 

24-Z, 86-Y, 144-X Ratio between maximum of the envelope of the signal and 
signal duration 

- 

Frequency-related features 

25-Z, 87-Y, 145-X Mean of the DFT DFT: discrete Fourier transform 

26-Z, 88-Y, 146-X Maximum of the DFT - 
27-Z, 89-Y, 147-X Frequency at the maximum of DFT - 
28-Z, 90-Y, 148-X Frequency of the spectral centroid f ( γ 1 ), see 39 
29-Z, 91-Y, 149-X Central frequency of the 1st quartile - 
30-Z, 92-Y, 150-X Central frequency of the 3rd quartile - 
31-Z, 93-Y, 151-X Median of the normalized DFT - 
32-Z, 94-Y, 152-X Variance of the normalized DFT - 
33-Z, 95-Y, 153-X Number of peaks ( > 0.75 DFT MAX ) DFT MAX : maximum of the DFT 

34-Z, 96-Y, 154-X Mean peaks value from 33 - 

35–38-Z, 97–100-Y, 
155–158-X 

Energy in 0–0.25 ∗Nyq., 0.25–0.5 ∗Nyq., 0.5–0.75 ∗Nyq., 
0.75–1 ∗Nyq., where Nyq. -Nyquist frequency of the signal 

f 2 ∫ 
f 1 

DFT ( f )d f , f 1 , f 2 : corresponding frequency range 

39-Z, 101-Y, 159-X Spectral centroid γ1 = 

m 2 
m 1 

, m 1 , m 2 : first and second moment 

40-Z, 102-Y, 160-X Spectral gyration radius γ2 = 

√ 

m 3 
m 2 

, m 3 : third moment 

41-Z, 103-Y, 161-X Spectral centroid width 
√ 

γ 2 
1 − γ 2 

2 

Pseudo spectrogram features (calculated with DFTs of 10-s length and an overlap of 90 per cent) 

42-Z, 104-Y, 162-X Kurtosis of the envelope of the maximum energy on the 
spectrograms 

Kurtosis [ 
max 

t = 0 , . . . , T 
( S P EC ( t, f ) ] , SPEC ( t , f ): 

spectrogram 

43-Z, 105-Y, 163-X Kurtosis of the envelope of the median energy on all 
spectrograms 

see 42 

44-Z, 106-Y, 164-X Mean ratio between the maximum and the mean 
of all DFTs 

mean 
[ 

max ( SPEC ) 
mean ( SPEC ) 

] 

45-Z, 107-Y, 165-X Mean ratio between the maximum and the median 
of all DFTs 

see 44 

46-Z, 108-Y, 166-X Number of the peaks in the curve showing the temporal 
evolution of the DFTs maximum 

- 

47-Z, 109-Y, 167-X Number of the peaks in the curve showing the temporal 
evolution of the DFTs mean 

- 

48-Z, 110-Y, 168-X Number of the peaks in the curve showing the temporal 
evolution of the DFTs median 

- 

49-Z, 111-Y, 169-X Ratio between 46 and 47 - 
50-Z, 112-Y, 170-X Ratio between 46 and 48 - 
51-Z, 113-Y, 171-X Number of peaks in the curve of the temporal evolution 

of the DFTs central frequency 
- 
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Table A1. Continued 

Number-seismometer channel Description Formula 

52-Z, 114-Y, 172-X Number of peaks in the curve of the temporal evolution 
of the DFTs maximum frequency 

- 

53-Z, 115-Y, 173-X Ratio between 51 and 52 - 
54-Z, 116-Y, 174-X Mean distance between the curves of the temporal evolution 

of the DFTs maximum frequency and mean frequency 
- 

55-Z, 117-Y, 175-X Mean distance between the curves of the temporal evolution 
of the DFTs maximum frequency and median frequency 

- 

56-Z, 118-Y,176-X Mean distance between the 1st quartile and the median of all 
DFTs as a function of time 

- 

57-Z, 119-Y, 177-X Mean distance between the 3rd quartile and the median of all 
DFTs as a function of time 

- 

58-Z, 120-Y, 178-X Mean distance between the 3rd quartile and the 1st quartile of 
all DFTs as a function of time 

- 

Polarity features (all channels used) 

59 Rectilinearity 1 − λ11 + λ22 
2 λ33 

, λ33 >> λ22 >> λ11 

60 Azimuth arctan( λ23 / λ13 ) × 180/ π

61 Dip arctan( λ33 / 
√ 

λ2 
23 + λ2 

13 ) × 180/ π

62 Planarity 1 − 2 λ11 
λ33 + λ22 

C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 
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