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Diverse plasmid systems and their ecology 
across human gut metagenomes revealed  
by PlasX and MobMess

Michael K. Yu    1,9  , Emily C. Fogarty    2,3,9 & A. Murat Eren    4,5,6,7,8 

Plasmids alter microbial evolution and lifestyles by mobilizing genes 
that often confer fitness in changing environments across clades. Yet 
our ecological and evolutionary understanding of naturally occurring 
plasmids is far from complete. Here we developed a machine-learning 
model, PlasX, which identified 68,350 non-redundant plasmids across 
human gut metagenomes and organized them into 1,169 evolutionarily 
cohesive ‘plasmid systems’ using our sequence containment-aware 
network-partitioning algorithm, MobMess. Individual plasmids were often 
country specific, yet most plasmid systems spanned across geographically 
distinct human populations. Cargo genes in plasmid systems included 
well-known determinants of fitness, such as antibiotic resistance, but also 
many others including enzymes involved in the biosynthesis of essential 
nutrients and modification of transfer RNAs, revealing a wide repertoire of 
likely fitness determinants in complex environments. Our study introduces 
computational tools to recognize and organize plasmids, and uncovers 
the ecological and evolutionary patterns of diverse plasmids in naturally 
occurring habitats through plasmid systems.

As a class of mobile genetic elements1, plasmids can occur in cells 
from all domains of life2, typically as extrachromosomal and circular 
DNA. Plasmids replicate semi-independently of their hosts and often 
transfer between cells as a mechanism of horizontal gene transfer3. A 
hallmark of plasmids is their remarkably diverse capacity to impact 
their microbial hosts through fitness-determining functions they 
carry1, such as antibiotic-resistance genes4 and virulence factors5. 
Plasmids also exhibit many interesting genetic properties, such as 
frequent recombination, which can result in plasmids sharing recur-
rent ‘backbone’ sequences but differing in their cargo genes6–8. These 
backbone sequences often encode for core replication and transfer 
machinery6,7,9,10 that determine the set of compatible hosts they can 

inhabit10,11 as well as regulate their copy number in a specific host12. 
Experiments in model systems and organisms in culture have revealed 
the critical impact of plasmids in microbial phenotypes and survival, 
especially for pathogens with medical significance. However, our 
understanding of the diversity, ecology and genetic architecture of 
naturally occurring plasmids are far from complete.

Recent advances in metagenomics offer unprecedented  
access to the entire DNA content of an environment without the need 
for cultivation. In particular, metagenomic assembly and binning 
strategies have enabled the reconstruction and characterization of 
microbial genomes de novo13, including those in the human gut where 
microorganisms have been associated with health and disease states14. 
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Table 2). We further evaluated the performance of PlasX and other 
methods on a recently characterized plasmid of Wolbachia, pWCP35. 
PlasX was able to predict pWCP as a plasmid (score = 0.73), whereas 
none of the other methods in our tests recognized pWCP as a plasmid 
(Supplementary Table 3). Finally, as an additional benchmarking step 
to determine the ability of PlasX to distinguish plasmids from other 
mobile genetic elements, we ran PlasX on all integrative and conjuga-
tive element (ICE) sequences from the ICEberg database36 (n = 552) and 
all prophage sequences from the National Center for Biotechnology 
Information (NCBI) viral database (n = 445). PlasX correctly classified 
92.2% of ICEs (Supplementary Table 4) and 93.2% of the NCBI viral 
database (Supplementary Table 5) as not plasmids. Platon could also 
distinguish prophages from plasmids with high accuracy (99.6%) but 
its classification accuracy was much lower compared with PlasX for 
ICEs, as Platon classified 37.1% of ICEs as plasmids.

The improved efficiency of PlasX comes from its reliance on 
de novo gene families rather than sequence features or gene func-
tions alone. Genes in microbial sequence collections often cannot be 
annotated to a known function, and a known function often groups 
together genes with large sequence differences. By partitioning genes 
into homologous groups, de novo gene families both increase the frac-
tion of usable input data for training and increase the resolution of the 
resulting units that improve training and prediction. For instance, the 
Pfam PF10609 is a broad family of genes related to parA, a gene that 
drives the partitioning of not only chromosomes37 but also plasmids38 
during cell division. As genes that resolve to this function are found on 
35% of plasmids and 95% of chromosomes, it has no ability to distin-
guish plasmids and chromosomes (coefficient of −0.023). However, 
PF10609 in our dataset could be subdivided into two de novo gene 
families, one of which was plasmid-specific (coefficient of +0.455) 
and the other chromosome-specific (coefficient of −0.198). A clear 
divergence of plasmids and chromosomes into monophyletic groups 
was indeed observed for the gene sequences in the two de novo gene 
families of PF10609 (Fig. 1f,g). Furthermore, 35.5% (398,174) of the 
de novo gene families did not resolve to a known function, despite that 
many had highly positive coefficients. In fact, 12,076 of gene families 
with unknown functions had coefficients of >0.1, and of the 200 gene 
families with the highest coefficients, 129 did not have any functional 
annotation. Our survey of gene families (Supplementary Table 6) high-
lights the difficulty of using functional annotations alone to infer the 
importance of a gene family in plasmid recognition. Although some 
gene families included keywords such as ‘plasmid’, ‘replication’ or 
‘conjugation’ in their functional descriptions to offer naive confirma-
tions for plasmid relevance, most others were difficult to immediately 
associate with plasmids. For instance, the gene family with the 17th 
highest PlasX coefficient of 1.678 in our list was a family of lipopro-
teins (PF05714). Its annotation, ‘Borrelia burgdorferi virulent strain 
associated lipoprotein’, does not explicitly associate it with plasmids. 
However, it occurred in 168 plasmids and only two chromosomes in our 
training data and has been studied previously for conferring virulence 
in plasmids39,40, which suggests that PlasX-assigned coefficients offer 
an effective means to identify key gene families to recognize plasmids.

Overall, these results show that PlasX performs better than 
state-of-the-art plasmid prediction approaches in cross-validation 
tests, is able to recognize plasmids that are not present in existing 
databases and is less likely to confuse other mobile genetic elements 
with plasmids.

PlasX unveils diverse plasmids of the human gut
Next, we applied PlasX to survey naturally occurring plasmids in the 
human gut microbiome, an environment that harbours a diverse range 
of microorganisms and mobile genetic elements41. For this, we assem-
bled 36 million contigs from 1,782 human gut metagenomes, spanning 
culturally and geographically distinct human populations (Supplemen-
tary Table 7). Running PlasX on these data resulted in a total of 226,194 

Metagenomic approaches have also been applied to study plasmid  
content15, but such applications have been limited to shotgun sequenc-
ing of plasmid-enriched samples16–18 or to surveying only a handful  
of metagenomes at a time19–21. Over the past decade the number of 
publicly available metagenomes has rapidly increased, creating an 
opportunity to conduct large-scale studies to characterize the diversity 
of naturally occurring plasmids in complex ecosystems.

Several computational strategies have been developed to identify 
plasmids in sequence collections. Yet distinguishing plasmids from 
bacterial chromosomes or from other mobile genetic elements, such 
as viruses via computational strategies, remains a challenge22. Popular 
plasmid prediction strategies rely on k-mer patterns learned from 
reference plasmid sequences19,20,23, exploit known functions such as 
replication or conjugation genes24–26 or use a combination of these 
features27. Although these features can help identify plasmids similar 
to those in public databases, they are of limited utility to recognize 
plasmids that are not yet described. Other approaches focus on the  
circularity of sequences during (meta)genomic assembly21,28,29; how-
ever, this strategy overlooks plasmids that are linear, integrated or 
found as assembly fragments and may confuse other types of circular 
mobile elements for plasmids.

Here we present PlasX, a machine-learning approach to identify  
plasmids in complex microbial ecosystems, and Mobile Element  
Systems (MobMess), a robust network-partitioning algorithm to gain 
insights into plasmid evolution at scale. Using PlasX we identified a 
collection of 68,350 non-redundant plasmids in the human gut micro-
biome that were more genetically diverse than reference plasmids 
and substantially more prevalent across global human populations. 
We then used MobMess to organize predicted plasmids into ‘plasmid 
systems’ based on shared backbone sequences, which provided us with 
an evolutionary framework to investigate plasmid cargo gene content 
as a function of environmental pressures.

Results
Classification of plasmids based on de novo gene families
To train our machine-learning model, we first compiled a reference set 
of 16,827 plasmids and 14,367 chromosomal sequences from public 
databases (Fig. 1a and Supplementary Table 1), in which we identified 
51.2 million open reading frames. We were able to assign a function 
to 71% of plasmid genes using the Clusters of Orthologous Groups 
(COG)30 and/or Pfam31 databases. In parallel, we clustered all genes 
into 1,090,132 de novo gene families, which accounted for 95% of all 
plasmid genes (Fig. 1b and Supplementary Fig. 1a) and constituted the 
primary data for the training of PlasX (Fig. 1, Supplementary Fig. 1b,c 
and Supplementary Information).

PlasX is a logistic regression that assigns a positive or negative 
coefficient to gene families that are likely to originate from sequences 
that are of plasmid or non-plasmid origin (Fig. 1c). The algorithm pre-
dicts whether or not a given sequence is a plasmid by considering the 
coefficients of all gene families in the sequence, and assigns a score to 
each prediction that ranges between zero and one; a prediction score 
of >0.5 suggests that the sequence is more likely to be a plasmid than 
not. To benchmark PlasX, we compared its performance with three 
state-of-the-art algorithms—PlasClass20, PPR-Meta32 and Platon33—using 
a cross-validation strategy in which we trained models on a subset of 
non-redundant reference sequences and evaluated their performance 
on the remaining sequences that were not used for training (Supple-
mentary Information). PlasX achieved the highest area under the preci-
sion–recall curve (AUCPR = 0.70), which was a substantial improvement 
compared with the next-best method Platon (AUCPR = 0.23; Fig. 1d). 
We then conducted a test using 21,012 plasmids that were recently 
included in a large plasmid database (PLSDB)34. PlasX correctly iden-
tified 81.5% (17,128) of these sequences as plasmids, whereas Platon, 
the next-best method in our cross-validation tests, only predicted 
37.4% (7,860) as plasmids in its most sensitive mode (Supplementary 
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predicted plasmids with a score of >0.5 (Fig. 2a, Supplementary Fig. 2a 
and Supplementary Table 8). Our predictions spanned a wide range of 
lengths, including 135 sequences that were longer than 100 kbp, but 
they were generally shorter than reference plasmids with a median 
length of 2.6 versus 53.3 kbp, respectively (Supplementary Fig. 2b). Part 
of this discrepancy is most probably due to the fragmented nature of 
assembled sequences from metagenomes. The median length of the 
entire set of contigs was 2.1 kbp and only 50,310 (0.14%) contigs were 
longer than 100 kbp. To minimize the impact of assembly fragments 
in our results, we removed predictions that did not seem to be circular 
and, at the same time, seemed to be fragments of more complete pre-
dictions in our collection. This filter left us with 100,719 predictions for 
downstream analyses (Methods and Supplementary Fig. 3). Although 
this filtered set inevitably contains fragmented plasmids due to the 
nature of the input data, hereafter we refer to them as ‘plasmids’ for 
practical reasons.

To determine the circularity of plasmid sequences in metage-
nomes, we analysed the orientation of mapped metagenomic 
paired-end reads (Fig. 2b). With this approach we found that 19,652 
plasmid sequences were circular, and we designated them as 
high-confidence plasmids for downstream analyses. Circular plas-
mids had a median length of 4.4 kbp and included sequences that were 
longer than 25 (n = 854), 50 (n = 378) and 100 kbp (n = 47). An addi-
tional 14,151 sequences were not circular themselves but were highly 
similar to a circular sequence. Together, these two types of sequences 
defined a set of ‘circular-associated’ sequences representing 33.6% 
(33,803/100,719) of the predictions. Multiple factors can explain 
the lack of signal for circularity for the remaining plasmids, includ-
ing insufficient sequencing depth to observe a sufficient number of 
reverse–forward pairs, fragmented contigs, or the non-circular nature 
of some plasmids that occur linearly42 or those that are integrated 
into chromosomes2.
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Fig. 1 | A machine-learning model for classifying plasmids. a, Our pangenomics 
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annotated using known families, de novo families or a combination of both.  
c, Training of PlasX. Reference sequences are sliced into 10-kbp windows and then 
prediction scores are made by a logistic regression that sums the contributions 
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indicate the performance of PlasX using a score threshold of either >0.5 or >0.9. 
e, Coefficients of the 200 gene families with the highest PlasX coefficients and 
that are thus most important for identifying plasmids. f, Maximum-likelihood 
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Beyond circularity, confirming in silico whether a sequence repre-
sents a plasmid is a remarkable challenge. Although single-copy core 
genes have been used to assess the completeness of non-plasmid and 
non-viral genomes assembled from metagenomes13, our understand-
ing of the canonical features of plasmids is limited to a relatively small 
set of well-studied genes that are primarily derived from plasmids of 
model organisms in culture24,25. For instance, MOB-suite25 identified 
canonical features for plasmid replication and conjugation in only 
61% of the reference plasmid subtypes we used to train PlasX, which 
reveals the limits of conventional approaches to identify plasmid 
features and survey previously undescribed plasmids (Supplemen-
tary Table 1). Indeed, MOB-suite identified canonical features in only 
10.1% of our predictions (Supplementary Table 8). Given this narrow 
sensitivity, we developed orthogonal data-driven strategies to increase 
confidence in our predictions (Supplementary Information). We found 
that 49.4% (49,739) of predictions had orthogonal support for being a 
plasmid—by MOB-suite or other metrics (Fig. 2c)—and 28.5% (28,658) 
had such support but were not in the NCBI database (Supplementary 
Table 8). Overall, these findings suggest that our collection of predicted 
plasmids include not only sequences that match known plasmids but  
also uncharacterized ones that can further advance our ability to  
infer the gene pool and ecology of naturally occurring plasmids.

Although conducting experiments is the most reliable strategy 
for validation, the labour-intensive and low-throughput nature of such 
investigations represent a substantial limit to their scale. Nevertheless, 
to experimentally validate at least some of our metagenome-derived 
predictions as true plasmids of the human gut, we developed a pipeline 

to identify predictions that (1) are present in human gut microbial 
isolates, (2) are circular in those isolates and (3) can be naturally trans-
ferred to other microorganisms. First, we detected 127 of our predicted 
plasmids in 14 Bacteroides isolate genomes that we sequenced in a 
previous study43 (Supplementary Fig. 4). For two of these plasmids, 
pFIJ0137_1 and pENG0187_1, we performed additional short-read  
and long-read sequencing to obtain complete plasmid genomes and 
confirm their circular configuration (Supplementary Fig. 5). Finally, we 
demonstrated the ability of pFIJ0137_1 to transfer as a plasmid and con-
fer antibiotic resistance from one Bacteroides fragilis host to another 
(Methods and Supplementary Fig. 4). Although not comprehensive, 
these experimental results show that PlasX is able to predict plasmids 
that have canonical features of being extrachromosomal, circular and 
transmissible between cells.

Overall, our survey of individual assemblies of human gut metage-
nomes using PlasX resulted in 100,719 plasmid sequences for in-depth 
characterization.

Predicted plasmids are prevalent and reflect human 
biogeography
Next, we sought to investigate the ecology of plasmids across human 
populations by creating a non-redundant collection of all plasmids 
and using metagenomic read recruitment to quantify their distri-
bution across individuals. The de-replication step resulted in 11,121 
non-redundant reference plasmids and 68,350 non-redundant pre-
dicted plasmids. Recruitment of short reads from the 1,782 globally dis-
tributed human gut metagenomes showed that only 1.9% of reference 
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100,719 non-fragment predictions) were circular-associated sequences, 26,921 
(26.7%) were ‘keyword-recognizable’ (as they contained a COG or Pfam function 
with the word plasmid or conjugation), 3,996 (4.0%) were highly similar to a 
known plasmid sequence in NCBI and 65,117 (64.7%) had no hits to any sequence 
in NCBI. As these different subsets of plasmids partially overlap, we took their 
union to find that 49,739 (49.4%) of predictions had some orthogonal support 
for being a plasmid, by MOB-suite or any of the other three types of analyses, and 
28,658 (28.5%) had such support and were not found in NCBI.
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plasmids were present in at least two individuals in our dataset, reveal-
ing the limited ecological relevance of reference plasmids to naturally 
occurring gut microbial communities (Fig. 3a). Such a weak detection 
of reference plasmids in the human gut is probably due to the heavy 
representation of human gut-associated plasmids in public databases 
that originate from a relatively small number of human pathogens 
that are not typically abundant in healthy humans. The reference plas-
mids did include those that were extremely prevalent across human 
metagenomes, such as pBI143, a cryptic plasmid that was present in 
52% of the gut metagenomes in our dataset, which we investigated in 
depth elsewhere44. However, the predicted plasmids were much more 
prevalent across human populations in general (Fig. 3b); 63.1% of the 
predicted plasmids were present in at least two individuals (Supple-
mentary Fig. 2d). In fact, 99.7% of all plasmids that occurred in 100 or 
more individuals were predicted plasmids.

Due to their increased representation in naturally occurring gut 
microbiomes, the plasmids we predicted from metagenomes better 
capture the biogeography and lifestyles of human populations com-
pared with reference plasmids. The organization of metagenomes 
based on their plasmid content showed that only 50.2% of individuals 

were placed next to someone from the same country based on ref-
erence plasmids (Fig. 3a). This percentage increased to 74.0% with 
plasmids from metagenomes (Fig. 3b). Furthermore, their distri-
bution distinguished between individuals from industrialized and 
non-industrialized countries (Fig. 3c) and revealed country-specific 
clustering of metagenomes (Supplementary Fig. 6).

These results parallel other studies that found associations link-
ing the gut microbial taxonomy with the geography and lifestyles of 
human populations45, and thus they lead to an important question: if 
plasmids and microbial taxa are each correlated with human geogra-
phy, is microbial taxonomy also correlated with plasmid distribution 
patterns? On the one hand, it would be conceivable to expect a strong 
correlation between the two as plasmids rely on host machinery for 
replication and thus their presence in an environment depends on 
the presence of a suitable microbial taxon. On the other hand, such 
associations may be weak or even non-existent for two reasons: (1) 
some plasmids are known to have a broad host range46 and thus, their 
presence in a given environment might not be consistently associated 
with the presence of a single species or even higher taxonomic category 
such as a genus or phylum, and (2) plasmids can be gained or lost as a 
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function of environmental pressures, such that nearly identical micro-
organisms can differ by the presence or absence of a plasmid or in the 
number of plasmid copies. By taking advantage of a large number of 
plasmids that are representative of human biogeography, we examined 
the ecological associations between plasmid distribution patterns  
and microbial taxonomy to determine to what extent plasmid ecology 
can be explained by microbial taxonomy.

Plasmid ecology is not explained by microbial taxonomy
For every plasmid, we inferred its most probable host as the taxonomic 
group that had the most similar ecological distribution (Methods). 
Although some predicted plasmids had a high ecological similarity 
with their best matching taxonomic group, the vast majority of pre-
dicted plasmids had low similarity scores (median correlation = 0.04, 
median Jaccard = 0.21; Methods and Supplementary Fig. 7a,b). We also 
observed low similarity scores even for reference plasmids that are 
isolated from a defined microbial host (Supplementary Fig. 7c,d). For 
example, the plasmid pDOJH10S and its cognate host, Bifidobacterium 
longum, were present together in ten metagenomes; however, in 27 
metagenomes we only found the plasmid and in 69 metagenomes we 
only found the host (Supplementary Fig. 7e). A more careful consid-
eration of the detection patterns we recovered from metagenomic 
read recruitment also showed low overlap between host and plasmid 
sequences across samples, with a Jaccard index of 0.40 (Supplementary 
Fig. 7f and Supplementary Table 13). The weak correlations between 
plasmid distribution patterns and microbial taxonomy suggest that 
plasmids are a highly complex and dynamic feature of microbiomes 
(Fig. 3a,b and Supplementary Fig. 2d), forming an ecological dimen-
sion that can stratify human populations (Fig. 3c and Supplementary 
Fig. 6) in ways that cannot be explained by microbial taxonomy alone  
(Supplementary Fig. 7). Although high-throughput analyses of  
human gut microbiomes often focus on taxonomic features, it has been 
challenging to find significant or reproducible taxonomic associations 
that distinguish health and disease states47. As plasmids often carry  
key determinants for survival in an environment, a complete under-
standing of the microbial ecology of health and disease states probably 
requires the inclusion of insights into plasmid ecology, which requires 
not only the recovery of naturally occurring plasmids through strate-
gies such as PlasX but also the characterization of their gene pool in an 
evolutionary framework, which we aimed to do next using MobMess.

Plasmid systems elucidate backbone versus cargo genes
Our large collection of naturally occurring plasmids provides a unique 
opportunity to study evolutionary patterns in the human gut plasmi-
dome. Due to frequent genetic rearrangements, a hallmark of plasmid 
evolution is the reuse of a backbone complemented with variable cargo/
accessory genes6,8,10,48. Plasmid backbones—which so far have been 
characterized based on nucleotide identity6,7,49, gene similarity10 or gene 
annotations50–52—typically encode machinery necessary for plasmid 
maintenance, and the cargo genes represent additional genetic content, 
such as antibiotic resistance or other fitness-determining functions.

Here we designed a network-partitioning algorithm, MobMess, to 
study backbone structures in any collection of plasmid sequences at 
scale (Supplementary Fig. 8). Briefly, MobMess first calculates pairwise 
alignments across all plasmids to build an initial sequence-similarity 
network in which a directed edge represents the containment of one 
plasmid within another, defined by ≥90% sequence identity and ≥90%  
coverage of the smaller plasmid. We found that these thresholds  
represent a natural divide between related and distant plasmids, as  
we observed a ‘valley’ at these thresholds in the distribution of pairwise 
average nucleotide identities between all predicted plasmids (Sup-
plementary Information and Supplementary Fig. 9). Next, MobMess 
recognizes and collapses redundancy between plasmids and analyses 
patterns of connectivity in the network to identify ‘backbone plasmids’ 
that satisfy two criteria: (1) the backbone plasmid must be a circular 

element, inferred here by paired-end orientation (Fig. 2b), to ensure 
that it is not an assembly fragment and can replicate as an independ-
ent element and (2) a backbone plasmid must be found as a subse-
quence within one or more ‘compound plasmids’. These compound 
plasmids are composed of the backbone and additional cargo, indicat-
ing the ability to acquire or lose genes. Here we define a backbone and  
its compound plasmids as an evolutionary unit called a plasmid  
system (Fig. 4a).

MobMess differs in multiple ways from recently described clus-
tering approaches that have been applied to plasmid sequences53,54, 
which have only been tested on reference plasmids that are complete. 
We designed MobMess to handle complex scenarios by distinguishing 
between fragmented and complete (circular) plasmids, a strategy that 
renders MobMess more suitable to work with complex datasets such 
as metagenomic assemblies, where sequence fragmentation is a com-
mon problem. Tracking the containment of smaller plasmids within 
larger ones is also a severe computational challenge that is overlooked 
by previous approaches (Supplementary Information). MobMess 
can distinguish whether a group of plasmids simply share a level of 
homology through partial alignments or a more nuanced evolutionary 
relationship through a common backbone that can replicate indepen-
dently (Supplementary Fig. 10). In this way MobMess minimizes spuri-
ous connections between distinct plasmid entities while maximizing  
its inference of evolutionarily cohesive groups as plasmid systems 
(Supplementary Fig. 11 and Supplementary Information).

This definition of plasmid systems facilitates analyses of plasmid 
backbone versus cargo content as well as their ecology when used 
in conjunction with metagenomic data, much in the same way that 
pangenomes enable studies of core versus accessory gene content in 
microbial genomes. However, plasmid systems are a specific case of 
pangenomics as it is unlikely to find a naturally occurring microbial 
genome composed only of core genes. In contrast, backbone plasmids 
represent a minimal entity that can propagate using only backbone 
genes. With its algorithmic considerations, MobMess provides an auto-
mated framework and vocabulary to explore the concept of plasmid 
systems across different studies and datasets.

Plasmid systems carry a wide repertoire of cargo functions
Our application of MobMess to the plasmid sequences predicted by 
PlasX from human gut metagenomes resulted in a total of 1,169 plasmid 
systems. Plasmid systems captured a small fraction of the genetic diver-
sity among non-redundant plasmids (6.5%, 4,424/68,350); however, 
they captured a large fraction of all circular plasmid contigs (72.7%, 
14,285/19,652; Methods and Supplementary Table 9) and plasmids 
that were part of a system tended to be longer than plasmids that were 
not part of any system (Supplementary Table 10). Due to our stringent 
criteria for the inclusion of plasmids in plasmids systems, MobMess 
identifies reliable plasmids with multiple representatives in a given 
dataset independently of the initial confidence scores assigned by 
PlasX. For instance, of all plasmids with scores between 0.5 and 0.9, 
MobMess placed 16,663 in plasmid systems, which retrospectively 
suggests that a strict cutoff on PlasX prediction scores (such as >0.9) 
will remove many genuine plasmids from downstream analyses.

Plasmid systems were highly heterogeneous in their genetic 
complexity. Thirty-seven plasmid systems contained sequences 
that could be classified into seven different plasmid incompatibility 
types (Inc11, Inc18, IncFIB, IncFIC, IncI-ɣ/K1, IncK2/Z and IncW; Sup-
plementary Table 9). Furthermore, 602 plasmid systems contained 
at least two non-redundant compound plasmids, with the largest sys-
tem containing 168 non-redundant compound plasmids (Fig. 4c). For 
example, pFIJ1037_1, one of the plasmids we isolated and transferred 
between B. fragilis strains, was part of PS486, a system containing 24 
non-redundant plasmids and found across a total of 127 metagenomes. 
The PS486 backbone consists of a replication protein and a toxin–anti-
toxin system, and the cargo genes include β-lactamases, erythromycin 
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resistance, tetracycline resistance and riboflavin biosynthesis (Fig. 4d 
and Supplementary Table 11).

To understand how much genetic content is typically conserved 
or variable in a plasmid system, we calculated the percentage of genes 
on compound plasmids that were backbone genes versus cargo genes 
(Methods). Compound plasmids contained a wide range of cargo 
gene percentages occurring anywhere between 0% and 100%, with a 
median value of 40% (Supplementary Fig. 12). Conversely, the median 
backbone percentage was 60%. PlasX often assigned higher model 
coefficients to backbone genes in the non-redundant set of predicted 
plasmids, suggesting that these genes define the ‘essence’ of a plasmid 
by encoding essential functions that promote the ability of a plasmid to 
exist as a distinct element from the chromosome, such as the genes for 
plasmid replication (repA; PF01051) and mobilization (mobA; PF03432; 

Fig. 4b). In contrast, PlasX assigned lower coefficients to cargo genes, 
suggesting that they encode functions that are not universally essential 
but important for specific niches, such as nitrogen reductase (nifH; 
PF00142) and membrane transport (ompA; PF00691). We found that 
24.1% (2,169/8,995) of backbone genes, versus 13.4% (3,229/24,168) 
of cargo genes, encoded COG and Pfam functions with descriptions 
related to plasmid replication, transfer and maintenance (Supplemen-
tary Information).

The most frequent type of function encoded on cargo genes was 
antibiotic resistance, including efflux pumps, which can provide gen-
eral resistance to multiple antibiotics, and genes targeting specific 
classes of antibiotics, such as glycopeptides and β-lactams (Fig. 5a). 
This large-scale observation is consistent with numerous examples 
of known plasmids encoding resistance and further illustrates how 
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the widespread presence of these plasmids poses a public health 
threat55,56. Other highly prevalent cargo functions included a wide  
diversity of cellular and metabolic pathways defined in the COG  
(Fig. 5b) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
bases (Supplementary Fig. 13). The most enriched among these was 
transfer RNA modification, encoded in 35 compound plasmids within 
different systems. For example, the globally prevalent system PS1110 
(present in 739 metagenomes) contained 291 compound plasmids  
(27 non-redundant), three of which encoded an enzyme that performs 
tRNA Gm18 2′-O-methylation (COG0566) and were collectively pre-
sent in 498 metagenomes (Supplementary Fig. 14 and Supplementary  
Table 11). This enzyme is thought to reduce the immunostimulatory 
nature of bacterial tRNA, which is detected by Toll-like receptors 
(TLR7) of the mammalian innate immune system57,58. Although plas-
mids in some pathogens are known to facilitate bacterial evasion of 
the mammalian immune system by regulating surface proteins59, the 
overwhelming prevalence of tRNA modification enzymes in our data 
suggests the likely presence of a previously unappreciated role for 
plasmids to increase the fitness of their bacterial hosts against the 
surveillance of the human immune system.

Overall, these results show that the plasmid systems we were able 
to identify from the human gut using MobMess represent evolutionar-
ily cohesive units with the enrichment of different classes of functions 
in the backbone and cargo gene pools. Functional annotations further 
suggest that whereas the conserved pool of backbone genes can yield 
insights into plasmid compatibility and maintenance, the dynamic pool 
of cargo genes could serve as a means to identify genetic determinants 
of fitness that respond to particular environmental conditions.

Plasmid cargo are genes adapted to specific environments
Given the highly heterogeneous biogeography of individual plasmids 
(Fig. 3b) and their organization into their country of origin (Supplemen-
tary Fig. 6), we next investigated whether the higher-order evolutionary 
units described by plasmid systems simply consisted of plasmids with 
similar distribution patterns or spanned larger geographical regions 
with individual plasmids of distinct ecology. Our analysis of plasmids 
and plasmid systems across metagenomes showed that although indi-
vidual plasmids were often present in a single country, plasmid systems 
frequently spanned multiple countries (Fig. 5c and Supplementary 
Table 9). Of the 2,005 individual plasmids that were unique to a single  
country, 1,794 (89.5%) were part of more geographically diverse plas-
mid systems that were present in at least two countries. In fact, 84% 
(982/1,169) of the plasmid systems in our dataset were present in at least 
two countries and we found that nine plasmid systems were present 
in as many as 15 of the 16 countries (Supplementary Table 9), suggest-
ing that cargo genes that were likely selected for in different regions 
stemmed from conserved backbone structures.

The broad ecological distribution patterns of plasmid systems 
compared with the country-specific distribution patterns of plasmids 
they describe presents a unique opportunity to gain insights into envi-
ronmental pressures that drive the composition of cargo genes within 
individual plasmid systems. To investigate this further, we focused on 
plasmid systems that spanned industrialized and non-industrialized 
countries, which were largely separated by the distribution of indi-
vidual plasmids (Fig. 3c). Many plasmids systems were exclusive to 
either industrialized or non-industrialized countries; however, 396 
were present in both (Fig. 5d). Antibiotic usage is a well-understood 
environmental pressure that often requires microorganisms to main-
tain plasmids with antibiotic-resistance genes60. In our data the evo-
lution of antibiotic resistance in a plasmid system coincided with the 
ecological variation of compound plasmids in the system. Specifically, 
we identified 24 high-confidence compound plasmids that encoded 
antibiotic resistance in cargo genes and were exclusively present in 
either non-industrialized or industrialized countries (Fig. 5e). Among 
the non-industrialized metagenomes, one of the most common types 

of antibiotic resistance is chloramphenicol resistance (Fig. 5a). For 
instance, the plasmid system PS974 contained 97 non-redundant 
plasmids; however, this system possessed chloramphenicol resist-
ance (conferred via an acetyltransferase) only in plasmids from Fiji 
(Fig. 5f and Supplementary Table 11). When we searched for these 
resistance plasmids across the global set of 1,430 metagenomes that 
contain PS974, we found them in 19/22 Fijian metagenomes but only 
in 1/1,408 non-Fijian metagenomes (P = 1.1 × 10−13, Fisher’s exact test; 
Fig. 5f, pictogram). Chloramphenicol is routinely prescribed in Fiji to 
treat eye infections, central nervous system infections, periodontitis, 
shigellosis, typhoid and paratyphoid fevers, and diabetic foot infec-
tions but it is rarely used in North America and Europe61–63. Strikingly, 
PS974 also contained compound plasmids that carry tetracycline resist-
ance (171/1,408 metagenomes) or erythromycin resistance (429/1,408 
metagenomes), yet these plasmids only occurred in individuals from 
China, Israel and the United Kingdom (Fig. 5f). Matching sequences to 
these plasmids on the NCBI databases suggested that their possible 
microbial hosts include populations in the phylum Firmicutes, such 
as Blautia hydrogenotrophica. However, the distribution patterns of 
plasmids in PS974 did not match any microbial taxa (highest Jaccard 
index = 0.37 across all plasmid-taxon comparisons). Our observations 
here suggest that despite sharing a common backbone, compound 
plasmids in PS974 give access to different antibiotic-resistance genes 
and their ecology is defined by lifestyle-specific usage of antibiotics.

Overall, these data show that plasmid systems can reveal cargo 
genes that serve as probable determinants of fitness given known envi-
ronmental pressures. Conversely, plasmid systems can also support 
hypothesis generation through insights into selective pressures given 
the known functions that differentially occur across environments as 
cargo, providing a biologically meaningful computational framework 
to study plasmid ecology and evolution at scale.

Discussion
Plasmids are found in nearly every microbial ecosystem, yet the com-
putational challenges associated with their de novo identification have 
made it difficult for microbiologists to routinely survey plasmids and 
define evolutionarily cohesive units to describe plasmid diversity in 
complex environmental samples. PlasX and other plasmid recogni-
tion systems19,20,22–24,33, along with MobMess to characterize plasmid 
systems, present a powerful roadmap for a detailed characterization 
of naturally occurring plasmids at scale. Although our study focused 
on the human gut microbiome, we designed PlasX and MobMess using 
a broad collection of reference sequences so that they can be applied 
to study any environment, and with the flexibility to include additional 
training sequences to improve accuracy. These methods provide a 
complementary approach to frequently used state-of-the-art work-
flows to study the taxonomic composition or functional potential of 
environmental or host-associated microbiomes through amplicon 
sequences or metagenomes.

Historically, plasmids and other genetic elements have been  
characterized on the basis of qualitative properties and descriptions. 
Early applications of machine-learning approaches to predict plasmids 
employed a small number of marker genes, which limited the recog-
nition of plasmids that lacked recognized markers. The effect of this 
shortcoming is clear, as many of the genuine plasmids contained no 
such markers (Fig. 2c). Another popular strategy to recognize plas-
mids has been to employ k-mers, but such algorithms will also miss 
plasmids that have low sequence similarity to those that are described 
in public databases (Fig. 1d). By relying on gene families, PlasX presents 
an unbiased addition to our bioinformatics toolkit to predict plas-
mids. However, although both our quantitative and qualitative sur-
veys showed that PlasX surpasses the performance of state-of-the-art 
algorithms to identify plasmids, it is essential for researchers to take 
into consideration that predicted sequences will contain both false 
positives and false negatives. Plasmids can be difficult to distinguish 
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from other mobile or integrated genetic elements as they share com-
mon features, including that they are extrachromosomal64, facilitate 
horizontal gene transfer65,66 and encode traditional core functions such 
as replication and mobilization25,67. The accuracy of PlasX is also tied to 
the underlying training set of reference plasmids and chromosomes; 
over- or under-representation of certain types of sequences can bias 
the model and limit generalizability.

The confidence scores PlasX assigns to each prediction may serve 
as a means to adjust the amount of noise in the prediction results; 
however, researchers must consider the trade-off between sensitivity 
(that is, capturing a higher fraction of true plasmids) versus specific-
ity (that is, reducing the number of falsely predicted plasmids) while 
setting a cutoff. The trade-off between sensitivity and specificity was 
most visible in our cross-validation analyses, where a threshold of 
>0.5 lies at an inflection point in the precision–recall curve in Fig. 1d 
(with a precision of 0.850 and recall of 0.500). This threshold was 
also sufficient at distinguishing ICEs and prophages from plasmids. 
The application of a stricter threshold of >0.9 increases precision by 
13% (to 0.920) but it also decreases recall by 44% (to 0.280). As our 
understanding of plasmid diversity in metagenomes is greatly under-
developed, here we decided to apply a threshold of >0.5 to provide a 
reasonable balance between precision and recall for our study and to 
include many potentially uncharacterized plasmids in our results. A 
good example of this is the long-missed Wolbachia plasmid35, which 
has a score of 0.73. At the same time, stricter thresholds (such as >0.9) 
or other filters such as circularity may be more appropriate in future 
work, where a higher precision of predicted plasmids (fewer false posi-
tives) is of higher priority.

Given the dynamism of plasmids, organizing them into evolu-
tionarily cohesive groups is a formidable challenge. Previous com-
putational methods for organizing plasmids have relied on average 
nucleotide identity to represent the whole-sequence similarity between 
plasmids but, although computationally tractable, this single sta-
tistic misses other evolutionary dimensions that relate sequences. 
To address these issues, we developed MobMess, which resolves the 
containment of plasmid sequences within one another. This methodo
logical advance enabled us to identify plasmid systems, revealing the 
great extent to which plasmids in complex ecosystems are not static 
entities but actively evolving in response to the environment. Plasmid 
malleability is a desirable property in bioengineering and has often 
motivated the repurposing of naturally occurring plasmids into major 
tools for genetically modifying organisms. In this vein, we propose com-
putational identification of plasmid systems as an attractive approach 
to expand the toolkit of available plasmids for genetic engineering, 
particularly if they are found in isolates that currently lack tools to 
make them genetically tractable. Plasmid systems, which manifest in 
many distinct forms across multiple human populations, excel at incor-
porating additional functions and propagating across a wide range of 
natural environments and may behave similarly in laboratory settings.

An overarching implication of our findings is that high-throughput 
recognition and characterization of plasmids in microbiome studies 
are necessary for more complete insights into the ecology of naturally 
occurring microbial systems.

Methods
Compiling and annotating a reference set of plasmids and 
chromosomes
We obtained a list of 16,168 plasmids from the 2019_03_05 version of 
PLSDB68. We also downloaded the entire collection of 13,471 complete 
bacterial genome assemblies from NCBI RefSeq on 26 October 2019, 
using instructions at https://www.ncbi.nlm.nih.gov/genome/doc/
ftpfaq/#allcomplete (ref. 69). The RefSeq assemblies contained 26,376 
contigs, of which we discarded 11,350 that are also in PLSDB. The refer-
ence set of 16,827 plasmids consisted of 16,168 PLSDB contigs as well as 
659 contigs from the RefSeq assemblies that were labelled as ‘Plasmid’ 

in the ‘Assigned-Molecule-Location/Type’ field of the NCBI assembly 
report. The reference set of chromosomes was the remaining 14,367 
RefSeq contigs.
To identify and annotate genes in these sequences, we used the pro-
gram ‘anvi-run-workflow’ with ‘--workflow contigs’ implemented70 in 
anvi’o71 v7.1, which uses Snakemake72 to execute previously defined 
steps (https://merenlab.org/anvio-workflows/) and to generate anvi’o 
contigs-db files (https://anvio.org/m/contigs-db). These steps include 
first running Prodigal73 to call genes and then running DIAMOND v2.0 
(ref. 74) and HMMER v3.3 (ref. 75) on amino acid sequences to deter-
mine gene functions against the amino acid sequences in Clusters of 
Orthologous Groups (COGs)30 and the Hidden Markov Models (HMMs) 
in the Protein Family Database (Pfams) v32.0 (ref. 31), respectively. To 
minimize noise, we used an e-value cutoff of 1 × 10−10 for COGs and the 
default model noise cutoff scores for Pfams.

Modelling de novo gene families
We inferred de novo gene families by running MMseqs2 (ref. 76) 
v10.6d92c on all amino acid sequences in our reference plasmids and 
chromosomes. First, we ran ‘mmseqs clusthash’ to collapse identical 
sequences into a non-redundant set for faster execution of the next 
step; the collapsing was inverted at the end to annotate all genes. Next, 
we ran ‘mmseqs cluster’ to calculate pairwise alignments and then 
cluster genes that are aligned above a minimum sequence identity 
threshold (parameter ‘--min-seq-id’). We ran this program multiple 
times with different thresholds (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2, 
0.15, 0.1 and 0.05) to infer a wide range of possible families. Families 
from different thresholds can be redundant, so we merged nested 
families—that is, if family X contains all genes in family Y, then we keep 
X and discard Y. We also discarded any family that contained only one 
gene. In theory, families inferred from a higher threshold (for example, 
0.9) should always nest within a family inferred from a lower threshold 
(for example, 0.05) such that we would discard all families from higher 
thresholds. However, in practice, families do not always nest within 
each other but only overlap partially. After merging, our final model 
used the following number of families from each threshold.

Identity threshold Number of de novo families

0.05 720,587

0.15 0

0.10 0

0.20 85,042

0.30 71,282

0.25 70,504

0.40 49,106

0.50 23,965

0.60 31,379

0.70 18,837

0.80 10,331

0.90 9,099

In total, our model used 1,090,132 gene families, which annotated 
162,783,114 genes. Note that because these gene families can still over-
lap with each other, a gene may have multiple annotations. This analysis 
took advantage of MMseqs2’s parallelism, taking approximately 6 h 
using 256 CPU cores.

We refer to a de novo family as a subfamily if 90% or more of its 
set of amino acid sequences are also annotated to a specific COG or 
Pfam. Note that this definition provides a small tolerance such that 
a subfamily does not need to be a perfect subset of a COG or Pfam. 
For the example about Pfam PF10609 (Fig. 1f,g), we gathered the 
253 amino acid sequences annotated to PF10609 and the subfamily 
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mmseqs_5_1535552. We also gathered the 1,391 sequences annotated to 
PF10609 and the subfamily mmseqs_70_40217271. We collapsed 100% 
identical sequences to yield a total collection of 142 and 310 sequences 
from mmseqs_5_1535552 and mmseqs_70_40217271, respectively. We 
aligned all of these sequences together using muscle v3.8.1551 (default 
parameters)77 and then constructed a maximum-likelihood phyloge-
netic tree using IQ-TREE v2.1.2 (parameters -m TEST -bb 1000 -alrt 
1000 -T AUTO)78. We then rooted the tree using the midpoint method.

Subtypes and slicing of reference sequences
To group reference sequences into subtypes, we used mash v2.2.2 
(ref. 79; command ‘mash dist’; sketch size, 100,000; k-mer size, 21) 
to calculate a distance score of 0–1 between every pair of sequences. 
Next, we created an undirected graph, where sequences are nodes and 
sequences are connected if their distance is ≤0.1. We defined a ‘sub-
type’ as one of the 7,326 connected components in the graph. A total 
of 3,935 subtypes contained only plasmids, 3,355 subtypes contained 
only chromosomes and 36 subtypes contained both plasmids and 
chromosomes (Supplementary Table 1).

We sliced reference sequences into slices of 10 kbp by sliding a 
window of 10 kbp at increments of 5 kbp. The first window starts at 
the beginning of the sequence and the final window stops at the end of 
the sequence. For instance, a 23 kbp sequence would be sliced at 0–10, 
5–15, 10–20 and 13–23 kbp. A slice was annotated with any gene that was 
entirely or partly inside the slice. We generated a total of 10,453,279 
slices from the reference chromosomes and 343,246 slices from the 
reference plasmids.

Assessing model performance in cross-validation
We performed fourfold cross-validation by splitting the set of 10-kbp 
slices of reference sequences into four random subgroups. We used 
the sequences in three subgroups to train our model, PlasX, and then 
we evaluated the performance of the model on the fourth subgroup. 
We repeated this procedure by changing which subgroups were used 
for training or evaluation a total of four times. This procedure is a com-
mon technique in machine learning, more generally known as ‘k-fold 
validation’ where k is the number of subgroupings. In a naive split, we 
keep all slices from the same reference sequence together in either 
training or testing data. In an informed split, we keep all slices from 
the same subtype together.

We assigned weights to the slices of 10 kbp when calculating pre-
cision and recall performance (Fig. 1d and Supplementary Fig. 1d,f). 
Consider the following notation to represent sequences:

Si = sequence i

Pu = the set of plasmid sequences in subtypeu

Cu = the set of chromosome sequences in subtypeu

Dki = windowslice kof sequence i

In addition, consider the following notation to represent weights:

w(Dki ) = weight ofwindowslice kof sequence i

w(Si) = ∑
k
w(Dki ) = weight of sequence i

w(Pu) = ∑
Si∈Pu

w(Si) = weight of plasmid sequences in subtypeu

w(Cu) = ∑
Si∈Cu

w(Si) = weight of chromosome sequences in subtypeu

We defined two different scenarios for assigning weights.  
Scenario A satisfies the following conditions:

(1) All slices from the same sequence have the same weight

w(Dsi ) = w(D
t
i) ∀s, t

(2) The weight of every sequence is equal to one

w(Si) = 1 ∀i

Scenario B satisfies the following conditions:
(1) All slices from the same sequence have the same weight

w(Dsi ) = w(D
t
i) ∀s, t

(2) All plasmid (or chromosome) sequences in the same subtype 
have equal weight

w(Si) = w(Sj) ∀i, j,uwhere Si ∈ Pu and Sj ∈ Pu

w(Si) = w(Sj) ∀i, j,uwhere Si ∈ Cu and Sj ∈ Cu

(3) All subtypes have equal weight

w(Pu) = w(Pv) ∀u, v

w(Cu) = w(Cv) ∀u, v

(4) The sum of weights across all slices equals the total number 
of slices

∑
u
w(Pu) = total number of plasmid slices (that is, 343, 246)

∑
u
w(Cu) = total number of chromosome slices (that is, 10,453, 279)

Each scenario implies a unique assignment of weight values.  
Scenario A requires that every sequence has the same weight. Impor-
tantly, this ensures that long sequences, which have disproportion-
ately more slices, have equal weights to shorter sequences. Scenario B  
further requires that every subtype has the same weight. Impor-
tantly, this ensures that subtypes that contain a disproportionately  
large number of sequences (for example, subtypes that represent  
commonly studied bacteria, such as Escherichia, Salmonella and  
Klebsiella) have equal weight as subtypes with fewer sequences.

We evaluated performance under two different cross-validation 
and weighting scenarios. Supplementary Fig. 1f shows the result of 
training models using a ‘naive’ cross-validation split and calculating 
precision/recall using weights from Scenario A. Figure 1d shows 
the results of training models using an ‘informed’ cross-validation 
split and calculating precision/recall using weights from Scenario B.  
We calculated precision/recall using the function sklearn. 
metrics.precision_recall_curve from the scikit-learn Python  
package80, with the parameter sample_weight set to the weights of 
the slices. We calculated AUCPR with the function sklearn.metrics.
average_precision_score.

PlasX implementation
We implemented PlasX as a logistic regression using the SGDClas-
sifier class from scikit-learn80. For training and evaluating PlasX, we 
used 10-kbp slices of the reference sequences to normalize for the 
fact that chromosomes are generally much longer than plasmids  
and to improve downstream application of PlasX on sequence col-
lections that may contain a large number of fragmented sequences,  
such as assembled metagenomes. Regardless of how we evaluated 
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PlasX (Fig. 1d or Supplementary Fig. 1f), we always trained it with 
weights defined by Scenario B and based on only slices in the train-
ing data.

To improve performance, PlasX uses a technique called elastic net 
regularization, which identifies gene families with redundant or noisy 
signals and then minimizes the usage of these families by setting their 
coefficients equal or close to zero. Consequently, only a non-redundant 
and informative set of gene families can impact predictions by having 
coefficients far from zero (Supplementary Fig. 1d). To implement 
elastic net regularization, we performed a grid search of hyperparam-
eters, with the regularization parameter alpha ranging from 1 × 10−8 to 
1 × 10−3 in multiplicative increments of √10 and the parameter l1_ratio 
being 0, 0.25, 0.5, 0.75 or 1.0. For each evaluation scenario (Fig. 1d or 
Supplementary Fig. 1f), we selected the hyperparameters that pro-
duced the best performance. We used the best hyperparameters from 
the informed cross-validation and the weights defined by Scenario B 
(alpha = 3.16 × 10−6; l1_ratio = 0) to retrain PlasX on all 10-kbp slices and 
create the final model that we used to predict plasmids from 
metagenomes.

Predicting plasmids from metagenomic assemblies
We acquired 1,782 publicly available gut metagenomes that represent 
16 countries (Supplementary Information). In this list, we labelled Tan-
zania, Ethiopia, Bangladesh, Madagascar and Fiji as non-industrialized 
and the remaining countries as industrialized for downstream 
analyses. We automated all steps of quality filtering, metagenomic 
assembly, read recruitment and profiling using snakemake72 work-
flows in anvi’o81. The illumina-utils82 commands ‘iu-gen-configs’ and 
‘iu-filter-quality-minoche’ with the flag ‘--ignore-deflines’ were used 
to quality filter the raw paired-end reads and each metagenome was 
assembled individually using IDBA_UD83 with default settings and the 
additional flag ‘--min_contig 1000’ to remove contigs shorter than 
1,000 nucleotides. We annotated COGs and Pfams in all assembled 
contigs using the same procedure as the reference plasmids and chro-
mosomes. To annotate gene families de novo, we first used ‘mmseqs 
result2profile’ (default parameters) to represent the sequence con-
servation in each de novo family as a profile. We then used ‘mmseqs 
search’ (default parameters) to search for profiles across all genes. We 
kept hits where the alignment coverage was ≥80% of both the gene and  
the profile and where the alignment identity was at least ≥X − 0.05 
where X is the minimum identity threshold used to originally con-
struct the family (parameter --min-seq-id). For example, if a family 
was constructed using an identity threshold of 0.8, then we kept hits 
with an identity of ≥0.75. Using these gene annotations, we ran PlasX 
to assign a score to every contig. We kept contigs intact, rather than 
slicing them into 10-kbp windows. Contigs with a score of >0.5 were 
classified as plasmids.

Detection and circularity of plasmids across metagenomes
We recruited short reads from our collection of metagenomes using 
Bowtie 2 v2.0.5 (ref. 84). We used the snakemake workflows in anvi’o to 
automate execution of Bowtie and post-processing to calculate ‘detec-
tion’ (that is, the proportion of a sequence that is covered by at least 
one read). We ran Bowtie 2 using the three following combinations of 
parameters and input files.

First, to identify circular contigs, we recruited each metagen-
ome’s reads to a fasta file that contained only the contigs assembled 
from that metagenome. For computational efficiency, we ran Bow-
tie 2 with its default behaviour to align every read at most once. We 
then analysed the orientation of paired-end reads (Fig. 2b). During 
assembly, circular sequences are broken by an artificial breakpoint 
to represent them as linear contigs. Consequently, DNA sequencing 
that occurred across this breakpoint will produce paired-end reads 
that align in a reverse–forward orientation to the ends of the contig. 
In contrast, if a sequence is not circular, then all paired-end reads 

are expected to align in a forward–reverse orientation. To illustrate 
this intuition, suppose the upstream read of a paired-end maps to 
positions 200–300 of a contig and the downstream read maps to 
500–600. If the upstream read maps with a reverse complement 
strandedness (that is, reverse) and the downstream read maps with the 
same strandedness as the way the contig is written (that is, forward), 
then the paired end is in a reverse–forward orientation. In other words, 
if the contig is written 5′-to-3′, then the upstream read maps 3′-to-5′ 
and the downstream read maps 5′-to-3′. Inversely, the paired end is 
in a forward–reverse orientation if the upstream read maps 5′-to-3′ 
and the downstream read maps 3′-to-5′. Next, we defined the gap (or 
insert) size of a paired end to be the distance between the closest (or 
farthest) aligned positions between its two reads. In our example the 
gap size is 600 − 200 = 400 and the insert size is 500 − 300 = 200. 
Let D be the length of the contig minus three times the median insert 
size of all forward–reverse paired ends that are aligned to the contig. 
Finally, we labelled a contig as circular if: (1) its detection was ≥0.95 
and (2) it had at least one reverse–forward paired end with a gap that 
was ≥D. This approach of examining reverse–forward paired ends was 
inspired by ref. 85. There were 154,680 contigs that were not predicted 
to be plasmids but still seemed to be circular; however, these contigs 
tended to have a smaller number of supporting reverse–forward reads 
relative to their coverage (Supplementary Fig. 2e), which may indicate 
that they are other types of mobile elements such as viruses or ICEs 
that temporarily circularize.

Second, to study the ecological distribution of all plasmids and 
plasmid systems at the same time, we recruited each metagenome’s 
reads to a fasta file that contained either the non-redundant set of 
68,350 predicted plasmids or the non-redundant set of 11,121 refer-
ence plasmids. For computational efficiency, every read was aligned 
at most once (that is, the default behaviour of Bowtie). A plasmid was 
considered present in a metagenome if its detection was ≥0.95. To 
compare metagenomes based on their plasmid content in Fig. 3 and 
Supplementary Fig. 6, we ran UMAP v0.5.1 (ref. 86) with the parameters 
‘n_neighbors = 30, n_components = 2, min_dist = 0.15, metric = ‘jaccard’, 
random_state = 1’. The heat maps in Fig. 3 were generated using the 
heatmap.2 package in R, with agglomerative clustering using median 
linkage on Euclidean distances.

Third, to study the specific plasmids from PS974 and PS1110 in  
Fig. 5f and Supplementary Fig. 14 (contig names in Supplementary 
Table 11), we ran Bowtie 2 on each sequence separately. This set-up 
allowed every read to potentially align to multiple sequences, result-
ing in a more complete estimation of which metagenomes contained a 
plasmid. For the backbone sequences of these systems, we designated 
them as present in a metagenome if their detection was ≥0.95. For com-
pound plasmids in PS1110 that encoded a chloramphenicol-resistance 
gene, we designated them as present in a metagenome if they satisfied 
an additional criterion that ≥0.95 of the resistance gene was covered 
by at least one read.

Estimation of potential hosts for plasmids in metagenomes
We used two different formulae to calculate the ecological similarity 
between a plasmid and potential host: (1) the Pearson correlation in 
the abundance levels of the plasmid and host across metagenomes, 
and (2) a Jaccard index to represent the fraction of metagenomes that 
contain both the plasmid and host.

We estimated taxonomic abundances in every metagenome by 
running Kraken 2 (ref. 87) v2.1.2 with its standard database (https://
github.com/DerrickWood/kraken2) and then refined the abundances 
using Bracken88 v2.5 (https://github.com/jenniferlu717/Bracken) with 
database parameters ‘-k 35 -l 96’. We ran Bracken (parameter ‘-r 96’) 
a separate time for every taxonomic rank: S1 (subspecies/strain),  
S (species), G (genus), F (family), O (order), C (class), P (phylum) and 
D (domain). The output of this analysis is a count of how many reads 
originated from each taxon.
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To compare the metagenomic presence/absence of plasmids 
versus taxa, we calculated MP, the set of metagenomes where a  
plasmid P is detected at ≥95% (based on recruitment to the 68,350 
non-redundant plasmids) and Mr

T , the set of metagenomes in which at 
least r reads originated from taxon T (based on Kraken and Bracken). 
For each plasmid, we attempted to find the best explanation of  
its ecological distribution by comparing the plasmid to every taxon 
using the Jaccard index and by scanning many possible read thresholds. 
More exactly, we used the following formula to represent the best  
possible explanation of the ecological distribution of a plasmid:

max
T

max
r

Jaccard(P, T; r)

where

Jaccard(P, T; r) = |MP ∩M
r
T|

|MP ∪M
r
T|

We evaluated 29 values for the threshold r, ranging from one to 
ten million reads in multiplicative increments of 101/4. We ignored 
plasmids that were present in fewer than five metagenomes (that is, 
|MP| < 5) because it was probable that these plasmids would have a high  
Jaccard similarity to some taxon by random chance. For instance, we 
observed that many pairs of plasmids and taxa occur in exactly one 
and the same metagenome and thus they have a Jaccard index of one.

To compare continuous-valued abundances, we defined the abun-
dance of a plasmid in a metagenome as the sum of coverage values 
across all sequence positions divided by sequence length, and we 
defined the abundance of a taxon as Bracken’s estimate of the number 
of reads originating from the taxon. If a plasmid had a detection of <95%, 
then we set its abundance to zero. If a taxon had <1,000 reads, then 
we set its abundance to zero. We ignored plasmids and taxa that had 
non-zero abundances in fewer than five metagenomes. For every pair of 
plasmid and taxon, we estimated the Pearson correlation between their 
abundance levels across metagenomes using FastSpar89 v1.0.0 (https://
github.com/scwatts/fastspar), which is an improved implementation 
of the SparCC90. This method accounts for the compositional nature 
of the data—in which abundances reflect relative instead of absolute 
quantities—by assuming that the amount of correlations in a dataset is 
sparse. We ran FastSpar on the non-redundant set of predicted plasmids 
and ran it separately on the non-redundant set of reference plasmids.

We performed a more careful analysis of plasmid pDOJH10S and 
its cognate host B. longum DJO10A by performing a read recruitment 
of metagenomes to both sequences together, using Bowtie 2 and  
allowing every read to align at most once (Supplementary Fig. 7f and 
Supplementary Table 13). Following Utter et al.91, we applied a detection 
threshold of >50% to identify the presence of the plasmid or host: 365 
metagenomes contained the plasmid, 818 metagenomes contained 
the cognate host and 336 metagenomes contained both genomes 
( Jaccard index = 0.40).

Keyword analysis of COGs and Pfams for plasmid functions. We 
labelled COGs and Pfams as plasmid-associated functions (Fig. 1e) 
if their database description contained any of following keywords 
as a substring: plasmid, toxin, replicat, integrase, transpos, recom-
binase, resolvase, relaxase, recombination, partitioning, mobilis, 
mobiliz, type IV, conjugal, conjugat, segregat, MobA, ParA, ParB and 
BcsQ. We labelled backbone and cargo genes as related to plasmid 
replication, transfer or maintenance if they were annotated to any 
plasmid-associated COG or Pfam (see the ‘Classification of cargo and 
backbone genes’ section).

To determine whether a predicted plasmid was ‘keyword- 
recognizable’ (Fig. 2c), we searched the plasmids for COGs and Pfams 
using a more restricted set of keywords ( just plasmid and conjugation) 
instead of the keywords above.

MobMess algorithm to de-replicate plasmids, remove 
assembly fragments and discover plasmid systems
The MobMess algorithm performs three tasks. It de-replicates plasmids 
that are nearly redundant to each other, it removes plasmids that seem 
to be assembly fragments and finally, it organizes plasmids together 
into evolutionary groups called plasmid systems. MobMess consists 
of several steps, as described below.

MobMess first performs an all-versus-all pairwise alignment of 
sequences using the MUMmer alignment package (v4.0.0rc1)92. All 
sequences are placed into a single fasta file and then aligned with 
‘nucmer’ (parameters ‘--maxmatch --minmatch = 16’) to calculate local 
alignment blocks. Alignments are specified asymmetrically such that 
one sequence is designated as the query q and the other is the refer-
ence r. For every q and r, the alignment blocks calculated by nucmer 
are written to a separate file and then a subset of blocks is identified 
using ‘delta-filter’ (parameters ‘-q -r’) to create a one-to-one alignment.

Next, MobMess constructs a directed graph G where vertices are 
sequences and edges represent the containment of one sequence 
within another (Supplementary Fig. 8a). Formally, consider a query q 
and reference r. Let |q| be the length of q. For the ith alignment block 
between q and r, let si, ei and δi be the start position in q, end position 
in q, and number of alignment mismatches and indels, respectively. 
The following values summarize the information across all alignment 
blocks between q and r.

Sumofblock lengths L = ∑
i
ei − si

Numberofmismatches and indels E = ∑
i
δi

Proportionof querypositions coveredC =
|q|
∑
j=1

{
1/|q| if∃i such that si ≤ j ≤ ei

0 otherwise

Local sequence identity Ilocal = (L − E )/L

Global sequence identity Iglobal = Ilocal × C

MobMess creates a directed edge (q,r) in G if Ilocal and C are above 
user-specified thresholds. In this study we applied thresholds of  
Ilocal ≥ 0.9 and C ≥ 0.9 (Supplementary Information). In Supplemen-
tary Fig. 9, we re-ran MobMess using various thresholds on Ilocal and C  
(the same threshold was applied to Ilocal and C at the same time).

MobMess clusters sequences according to strongly connected 
components in G, calculated using igraph v0.8.2 (ref. 93) in Python. 
That is, two sequences x and y are placed in the same cluster if there 
exists a directed path from x to y and another from y to x in G. Intuitively, 
a cluster represents a set of sequences that are nearly identical to each 
other across nearly their entire lengths. MobMess then reduces G  
to another graph H, called the condensation graph, by contracting 
every cluster of sequences into a single vertex. A directed edge (u,v) 
exists in H if and only if there are sequences x ∈ u  and y ∈ v  where  
edge (x,y) exists in G. Note that H does not have any cycles. As proof by 
contradiction, if there were a cycle of clusters, then those clusters 
would have been in the same strongly connected component in G  
and hence, would have been merged into a single, larger cluster.

MobMess labels every cluster in H as one of the three following 
types: (1) a ‘backbone cluster’ if it has an outgoing edge and at least one 
of its member sequences is circular, (2) a ‘fragment cluster’ if it has an 
outgoing edge but none of its member sequences are circular or (3) a 
‘maximal cluster’ if it does not have any outgoing edges. Intuitively, a 
maximal cluster represents the longest version of a plasmid observed 
in the data. In contrast, a backbone or fragment cluster represents a 
set of plasmids that are subsequences of other plasmids in a maximal 
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cluster. The only difference between backbone and fragment clusters 
is that backbone clusters contain at least one circular plasmid (imply-
ing complete assembly), whereas fragment clusters do not contain 
any circular plasmids (suggesting that they are assembly fragments 
of the maximal cluster).

To de-replicate sequences, MobMess discards all fragment  
clusters and then chooses a representative sequence from every  
maximal and backbone cluster. A cluster’s representative is the 
sequence with the highest global sequence identity (Iglobal) averaged 
across the set of alignments where that sequence is the reference and 
other sequences in the same cluster are the queries.

MobMess defines a plasmid system as a specific backbone 
cluster together with its ‘compound’ clusters, which are the set of 
non-fragment clusters connected to the backbone in H. Thus, there is 
a one-to-one correspondence between backbone clusters and plasmid 
systems. Note that systems can be nested within each other, because 
backbone clusters can be connected to each other in H. Thus, a back-
bone cluster can be the backbone that forms a given plasmid system 
and at the same time, it can also be a compound cluster with respect 
to an even smaller backbone that forms a different system. As another 
note, a maximal cluster can be a compound cluster of a system but it is 
also possible that some maximal clusters are not found in any system 
because they are not connected to any backbone clusters in H.

We ran MobMess to analyse the 226,194 predicted plasmid con-
tigs. MobMess grouped the contigs into a total of 132,616 clusters. Of 
these, 64,266 clusters were ‘fragment clusters’ that contained 125,475 
contigs, which we interpreted as assembly fragments of other pre-
dicted plasmids. We discarded these fragments from further analysis. 
The other 68,350 clusters were non-fragment clusters (that is, 1,169 
backbone and 67,181 maximal clusters) and contained 100,719 contigs. 
Finally, MobMess identified 1,169 plasmid systems, which together 
represent 1,169 backbone and 63,926 maximal clusters (3,255 maximal 
clusters were excluded). See Supplementary Fig. 3 for a diagram of 
these numbers.

We ran MobMess separately on the 16,827 reference plasmid 
sequences, yielding 11,121 clusters. We assumed that all reference 
plasmids were circular and thus, there were no fragment clusters. We 
visualized networks with Cytoscape94 v3.8 and laid nodes out using the 
prefuse directed force layout95. Although we have focused on plasmids, 
MobMess could be applied to de-replicate and organize other mobile 
genetic elements into systems.

Classification of cargo and backbone genes
We classified all genes on the backbone plasmids of a plasmid sys-
tem as backbone genes. For genes on compound plasmids, we tested 
whether the genes shared any de novo family annotations with the 
genes on the backbone plasmids. If so, we classified those genes as 
backbone genes, otherwise as cargo genes. For this analysis, we used 
the 1,090,132 de novo families that we constructed from reference plas-
mids and chromosomes to train PlasX; we also used an additional set of 
439,584 de novo families that we constructed by running the command 
MMseqs2 (--min-seq-id 0.05) on the genes from all plasmid sequences 
in this study (16,827 reference and 226,194 predicted plasmids). These 
additional families allowed us to capture gene families that might be 
absent in reference sequences but are conserved in predicted plasmids. 
Note that the classification of genes as backbone or cargo depends on 
which plasmid system is being considered. It is possible for a gene to 
be classified as a backbone gene with respect to one plasmid system 
and, at the same time, as a cargo gene with respect to another system. 
This is because a plasmid can be a backbone plasmid of a system and 
also a compound plasmid of a different system.

For every non-redundant compound plasmid in the system, we 
calculated the fraction of genes in the plasmid that were cargo genes. 
We then averaged this fraction across all non-redundant compound 
plasmids in the system to define the ‘cargo gene percentage’ of the 

system (Supplementary Fig. 12). Because every gene is either backbone 
or cargo, the percentage of backbone genes is 100% minus the cargo 
gene percentage.

For Fig. 4b and to analyse the content of backbone/cargo genes, 
we used a non-redundant and unambiguous set of 8,995 backbone and 
24,168 cargo genes. To derive these sets of genes, we first considered 
the 47,172 genes encoded on the 4,424 non-redundant plasmids that 
were part of at least one plasmid system. Of these 47,172 genes, we used 
the 8,995 genes that were classified as backbone genes because they 
were encoded on a backbone plasmid and that were never classified as 
cargo genes in any plasmid system. Of these genes, 24.1% (2,169/8,995) 
had a plasmid-associated keyword in their COG/Pfam annotations  
(see the ‘Keyword analysis of COGs and Pfams for plasmid functions’ 
section). We also used the 24,168 genes that were always classified as 
cargo genes and never backbone genes in any plasmid system. Among 
these genes, 13.4% (3,229/24,168) had a plasmid-associated keyword. 
We excluded the 1,917 genes that were sometimes classified as back-
bone genes and other times cargo genes, depending on the system, 
from the analysis. We also excluded 12,092 genes that were on com-
pound plasmids but were classified as backbone genes, as these genes 
are redundant with the backbone genes that were encoded on the 
backbone plasmid.

Identification of antibiotic-resistance genes
We annotated antibiotic-resistance genes using two databases. First, 
we searched against a database of resistance protein family HMMs 
from Resfams96 (v1.2; dated 27 January 2015, ‘Core’ database at http://
www.dantaslab.org/resfams). We used ‘anvi-run-hmms‘ from anvi’o71 
to automate running ‘hmmsearch’ from HMMER75 3.3.2 and apply an 
e-value cutoff of 1 × 10−10. Second, we ran rgi (v5.2.0; https://github.com/
arpcard/rgi) to search for similarity in the CARD database of resistance 
genes97. We removed CARD hits that were labelled as ‘Loose’ and kept 
those labelled as ‘Perfect’ or ‘Strict’. We removed any Resfams or CARD 
hits that contained the keywords ‘transcription’, ‘regulat’ or ‘modulat’ 
in their database description to avoid cases (for example, TetR protein) 
where the hit is a gene that regulates the expression of another resist-
ance gene but does not perform the molecular process that confers 
resistance. We categorized hits into major antibiotic-resistance classes 
by searching for the following keywords in their functional descrip-
tions: lincosamide, macrolide, erythromycin, chloramphenicol, amino-
glycoside, streptothricin, glycopeptide, efflux pump, beta-lactamase, 
nitroimidazole, tetraycyline, quinolone and sulfonamide. In addition, 
we searched the extra keywords ‘Van’ and ‘VanZ’ to identify glycopep-
tide resistance; ‘efflux’, ‘permease’ and ‘pump’ to identify efflux pumps; 
and ‘TetX’ to identify tetracycline resistance.

High-molecular-weight DNA extraction, long-read sequencing 
and determination of circularity through long reads
We employed a long-read sequencing strategy on two B. fragilis culti-
vars from two patients (p-214 and n-216, previously described by Vineis 
and colleagues43). We extracted total genomic high-molecular-weight 
DNA using one of two methods. For B. fragilis p-214, we used the  
Qiagen Genomic Tip 20/G procedure (also known as Method #4/GT) 
as previously described98 on a 10 ml overnight BHIS broth culture. 
For B. fragilis n-216, we used a phenol–chloroform protocol on 25 ml 
overnight BHIS broth cultures. Libraries were prepared using a Rapid 
barcoding kit (SQK-RBK004) and the standard protocols from Oxford 
Nanopore Technologies, with a few modifications. For B. fragilis p-214, 
DNA fragmentation was performed on 6 µg DNA (in 30 µl) using five 
passes through a 22 G needle. A total of 1.5 µg (in 7.5 µl) genomic DNA 
(Supplementary Table 12), based on sample availability, plus 2.5 µl 
fragmentation mix was used as input. We sequenced the samples  
for 72 h using a single R9.4/FLO-MIN106 flow cell (Oxford Nanopore 
Technologies). For B. fragilis n-216, DNA fragmentation was performed 
on 10 µg DNA (in 250 µl) using ten passes through a 22 G needle. A total 
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of input 0.32–0.44 µg genomic DNA (in 8.5 µl) plus 1.5 µl fragmentation 
was used as input. The samples were sequenced for 72 h using a single 
R9.4/FLO-MIN106 flow cell. We used Guppy (v4.0.15) for all post-run 
base calling, sample de-multiplexing and the conversion of raw FAST5 
files to FASTQ files.

To determine circularity, we used BLAST to align the long reads 
with a minimum quality score of seven to our predicted plasmid 
sequences following a previously described approach35. During assem-
bly, all DNA short reads are assembled as linear sequences even if they 
are circular elements. Circular elements have an artificial breakpoint 
to represent them as linear sequences, and this breakpoint can happen 
anywhere on the sequence depending on the assembly method. We 
identified and manually confirmed 500 long reads that aligned com-
pletely to a plasmid but not to the host chromosome (Supplementary 
Figs. 4a and 5b). We tested for the presence of an artificially introduced 
breakpoint by visualizing these alignments on the sequence as if it were 
assumed to be a circular element (Fig. 5a). If the sequence was indeed 
circular, the long reads would overlap each other and ‘wrap around’ the 
entire circumference of the sequence. In other words, all nucleotide 
positions of the sequence would be covered by at least one read and 
there would also exist a read that spans the breakpoint by aligning to 
both sides of the breakpoint. This property ensures the breakpoint is 
artificial and hence, the sequence is a circular element. Inversely, this 
property does not hold when the breakpoint is not artificial (that is, the 
sequence is actually an assembly fragment or linear element). Some 
of these long reads aligned across the artificial contig breakpoint, 
indicating that these plasmids were extrachromosomal and circular.

Transfer of predicted plasmid between microbial populations
We streaked B. fragilis p-214 (donor, carries erythromycin resistance 
on pFIJ0137_1; one of 14 isolates from Vineis et al.43) and B. fragilis 
638R (recipient, rifampicin-resistant) in duplicate onto plates with 
brain-heart infusion agar supplemented with hemin and vitamin K 
(BHIS). We picked colonies and incubated them anaerobically in 5 ml 
BHIS medium at 37 °C for 20 h. Although pFIJ0137_1 lacks conjugation 
machinery, it contains two relaxases (blue genes in Supplementary  
Fig. 4) and thus could be mobilized by different conjugative apparatus 
in the host cell. To mate the donor to the recipient, 250 μl of donor 
cells were pelleted in a centrifuge at 5,000g. We discarded the super-
natant and resuspended the donor in 1 ml of the recipient culture. 
The cells were again pelleted at 5,000g and then resuspended in 25 μl 
BHIS medium. The cells were spotted onto BHIS agar plates and incu-
bated anaerobically for 24 h. The cells were then resuspended in 1 ml 
BHIS; 250 μl of this suspension was plated onto BHIS plates containing 
8 μg ml−1 rifampicin and 25 μg ml−1 erythromycin to select for B. fragilis 
638R recipients of pFIJ0137_1. Duplicate plates had approximately 300 
colonies each. Plating the donor or recipient alone on rifampicin–
erythromycin plates resulted in no colonies, thereby confirming that 
the transformants were not spontaneous mutants to either antibiotic. 
Two transformant colonies were re-streaked onto fresh BHIS plates 
containing 8 μg ml−1 rifampicin and 25 μg ml−1 erythromycin. Through 
short-read sequencing of the donor, recipient and resulting transcon-
jugants, and by employing a read-recruitment analysis, we confirmed 
that pFIJ0137_1 transferred from B. fragilis p-214 to B. fragilis 638R 
(Supplementary Fig. 4).

Short-read sequencing of isolate genomes and confirmation 
of plasmid transfer
We cultured B. fragilis p-214 donor, naive B. fragilis 638R and B. fragilis 
638R transconjugants containing pFIJ0137_1 for 20 h. Libraries of these 
strains were prepared using 100 ng genomic DNA and a QIAseq FX 
DNA library kit (Qiagen). The DNA was fragmented enzymatically into 
smaller fragments and the desired insert size was achieved by adjusting 
the fragmentation conditions. The fragmented DNA was end repaired 
and ‘A’s were added to the 3′ ends to stage inserts for ligation. During 

the ligation step, Illumina-compatible Unique Dual Index adaptors were 
added to the inserts and the prepared library was PCR amplified. The 
amplified libraries were purified, and quality control was performed 
using a TapeStation. The libraries were sequenced on an Illumina MiSeq 
platform using a v2 cassette to generate 2 × 250 bp reads. To confirm 
the transfer of pFIJ0137_1, we individually recruited reads from the  
B. fragilis p-214 donor, naive B. fragilis 638R and B. fragilis 638R 
transconjugants to the pFIJ0137_1 reference sequence. We used anvi’o 
to create contigs and profile databases (as described earlier) and  
visualized these results with the command ‘anvi-interactive’. We 
independently confirmed the presence of pFIJ0137_1 by assembling 
genomes using SPAdes99 with default parameters.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Reproducible analyses of reference plasmids and chromosomes are 
available at https://doi.org/10.5281/zenodo.5732024. The PlasX model 
as well as our analyses of known and predicted plasmids are available 
at https://doi.org/10.5281/zenodo.5843600. For all metagenomes, we 
have compiled the contigs, taxonomic abundances and PlasX scores 
at https://doi.org/10.5281/zenodo.8175278, gene calls at https://doi.
org/10.5281/zenodo.5730987 and gene annotations at https://doi.
org/10.5281/zenodo.5731658. We have deposited long and short 
sequencing reads from B. fragilis isolates into the NCBI Sequence 
Read Archive (PRJNA782184). We obtained a list of 16,168 plasmids 
from the 2019_03_05 version of PLSDB68. We also downloaded the 
entire collection of 13,471 complete bacterial genome assemblies 
from NCBI RefSeq (accessed 26 October 2019), using instructions at 
https://www.ncbi.nlm.nih.gov/genome/doc/ftpfaq/#allcomplete 
(ref. 69). We also downloaded the more recent 2021_06_23_v2 version 
of PLSDB, which contains 34,513 plasmid sequences. We downloaded 
the collection of all ICE sequences (n = 552) from ICEberg36 2.0 (https://
db-mml.sjtu.edu.cn/ICEberg/; accessed 30 September 2022). We also 
downloaded 455 prophage sequences from the NCBI Virus data portal 
(https://www.ncbi.nlm.nih.gov/labs/virus; accessed 30 September 
2022). We downloaded fastq files for 1,782 short-read and paired-end 
metagenomes from the NCBI Sequence Read Archive using the pro-
gram ‘fastq-dump’. The metagenomes and original studies are listed 
in Supplementary Table 7. We annotated antibiotic-resistance genes 
using two databases. First, we searched against a database of resistance 
protein family HMMs from Resfams96 (v1.2, dated 27 January 2015; ‘Core’ 
database at http://www.dantaslab.org/resfams). Second, we ran rgi 
(v5.2.0; https://github.com/arpcard/rgi) to search for similarity in the 
CARD database of resistance genes.

Code availability
We have released two open-source software packages, PlasX100 and 
MobMess101, along with detailed installation and usage instructions. 
We used the program anvi-run-workflow with --workflow contigs imple-
mented70 in anvi’o71 v7.1, which uses Snakemake72 to execute previously 
defined steps (https://merenlab.org/anvio-workflows/) and to gener-
ate anvi’o contigs-db files (https://anvio.org/m/contigs-db). These 
steps include first running Prodigal73 to call genes and then running  
DIAMOND74 v2.0 and HMMER75 v3.3 on amino acid sequences to deter-
mine gene functions against the Clusters of Orthologous Groups 
(COGs)30 and Protein Family Database31 models (Pfams) v32.0, respec-
tively. We clustered genes using MMSeqs2 (ref. 76; v10.6d92c); identi-
fied sequence subtypes using mash79 (v2.2.2); analysed plasmids using 
PlasClass20 (v0.1.0-2-gb80a4f4), PPR-Meta32, Platon33, Deeplasmid27 
(Docker image sha256:10809927e2c8a14cf86231801b804b0bd4bdd
f600821d17fd8b7e41a15c562c0) and MOB-suite25 (v3.0.1); visualized 
networks using Cytoscape94 (v3.8); performed taxonomic assignment 
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using Kraken 2 (ref. 87; v2.1.2) and Bracken88 (v2.5); and ran correlation 
analysis using FastSpar89 (v1.0.0).
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