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Abstract 

Background:  Changes in microbial community composition as a function of human 
health and disease states have sparked remarkable interest in the human gut microbi-
ome. However, establishing reproducible insights into the determinants of microbial 
succession in disease has been a formidable challenge.

Results:  Here we use fecal microbiota transplantation (FMT) as an in natura experi-
mental model to investigate the association between metabolic independence and 
resilience in stressed gut environments. Our genome-resolved metagenomics survey 
suggests that FMT serves as an environmental filter that favors populations with higher 
metabolic independence, the genomes of which encode complete metabolic mod-
ules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. 
Interestingly, we observe higher completion of the same biosynthetic pathways in 
microbes enriched in IBD patients.

Conclusions:  These observations suggest a general mechanism that underlies 
changes in diversity in perturbed gut environments and reveal taxon-independent 
markers of “dysbiosis” that may explain why widespread yet typically low-abundance 
members of healthy gut microbiomes can dominate under inflammatory conditions 
without any causal association with disease.

Keyword:  Fecal microbiota transplantation, Human gut microbiome, Microbial 
colonization, Microbial metabolism, Metabolic independence

Background
Understanding the determinants of microbial colonization is one of the fundamental 
aims of gut microbial ecology [1, 2]. The gradual maturation of the microbiome dur-
ing the first months of life [3], the importance of diet and lifestyle in shaping the gut 
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microbiome [4, 5], and the biogeography of microbial populations along the gastrointes-
tinal tract [6] strongly suggest the importance of niche-based interactions between the 
gut environment and its microbiota. Previous studies that described such interactions 
in the context of microbial colonization have focused on microbial succession in infant 
gut microbiomes [3], or relied on model systems such as germ-free mice conventional-
ized with a consortium of microbial isolates from infant stool [7]. However, our under-
standing of the ecological underpinnings of secondary succession following a major 
ecosystem disturbance caused by complex environmental factors in the gut microbiome 
remains incomplete. A wide range of diseases and disorders are associated with such dis-
turbances, [8–10] however; mechanistic underpinnings of these associations have been 
difficult to resolve. This is in part due to the diversity of human lifestyles [11], and the 
limited utility of model systems to make robust causal inferences for microbially medi-
ated human diseases [12].

Inflammatory bowel disease (IBD), a group of increasingly common intestinal dis-
orders that cause inflammation of the gastrointestinal tract [13], has been a model to 
study human diseases associated with the gut microbiota [14]. The pathogenesis of IBD 
is attributed in part to the gut microbiome [15], yet the microbial ecology of IBD-asso-
ciated dysbiosis remains a puzzle. Despite marked changes in gut microbial community 
composition in IBD [16–18], the microbiota associated with the disease lacks acquired 
infectious pathogens [19], and microbes that are found in IBD typically also occur in 
healthy individuals [20], which complicates the search for robust functional or taxo-
nomic markers of health and disease states [21]. One of the hallmarks of IBD is reduced 
microbial diversity during episodes of inflammation, when the gut environment is often 
dominated by microbes that typically occur in lower abundances prior to inflammation 
[22]. The sudden increase in the relative abundance of microbes that are also common 
to healthy individuals suggests that the harsh conditions of IBD likely act as an ecologi-
cal filter that eliminates some populations while allowing others to bloom. Yet, in the 
absence of an understanding of the genetic requirements for survival in IBD, critical 
insights into the functional drivers of microbial community succession in such disease 
states remains elusive.

Fecal microbiota transplantation (FMT), the transfer of stool from a donor into a 
recipient’s gastrointestinal tract [23], represents an experimental middleground to cap-
ture complex ecological interactions that shape the microbial community during sec-
ondary succession of a disrupted gut environment. FMT is frequently employed in the 
treatment of recurrent Clostridioides difficile infection (CDI) [24] that can cause severe 
diarrhea and intestinal inflammation. In addition to its medical utility, FMT offers a 
powerful framework to study fundamental questions of microbial ecology by colliding 
the microbiome of a healthy donor with the disrupted gut environment of the recipient. 
The process presents an ecological filter with the potential to reveal functional deter-
minants of microbial colonization success and resilience in impaired gut environments 
[25].

Here we use FMT as an in natura experimental model to investigate the ecological and 
functional determinants of successful colonization of the human gut at the level of indi-
vidual microbial populations using genome-resolved metagenomics. Our findings high-
light the importance of environmental selection acting on the biosynthetic capacity for 
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essential nutrients as a key driver of not only colonization outcomes after FMT but also 
microbial resilience during inflammation, and demonstrate that ’metabolic independ-
ence’ can serve as a taxonomy-independent determinant of colonization success in the 
human gut under stress.

Results and discussion
Study design

Our study includes 109 gut metagenomes (Additional file  1) from two healthy FMT 
donors (A and B) and 10 FMT recipients (five recipients per donor) with multiple recur-
rent CDI. We collected 24 donor A samples over a period of 636 days and 15 donor B 
samples over a period of 532 days to establish an understanding of the long-term micro-
bial population dynamics within each donor microbiota. The FMT recipients received 
vancomycin for a minimum of 10 days to attain resolution of diarrheal illness prior to 
FMT. On the last day of vancomycin treatment, a baseline fecal sample was collected 
from each recipient, and their bowel contents were evacuated immediately prior to 
FMT. Recipients did not take any antibiotics on the day of transplant, or during the post-
FMT sampling period (Additional file 2: Fig. S1). We collected 5 to 9 samples from each 
recipient for a period of up to 336 days post-FMT. Deep sequencing of donor and recipi-
ent metagenomes using Illumina paired-end (2 × 150) technology resulted in a total of 
7.7 billion sequences with an average of 71 million reads per metagenome (Fig. 1, Addi-
tional file 1, Additional file 3). We employed genome-resolved metagenomics, microbial 
population genetics, and metabolic pathway reconstruction for an in-depth characteri-
zation of donor and recipient gut microbiotas, and we leveraged publicly available gut 
metagenomes to benchmark our observations.

Genome‑resolved metagenomics show many, but not all, donor microbes colonized 

recipients and persisted long‑term

We first characterized the taxonomic composition of each donor and recipient sam-
ple by analyzing our metagenomic short reads given a clade-specific k-mer database 
(Additional file 3). The phylum-level microbial community composition of both donors 
reflected those observed in healthy individuals in North America [27]: a large represen-
tation of Firmicutes and Bacteroidetes, and other taxa with lower relative abundances 
including Actinobacteria, Verrucomicrobia, and Proteobacteria (Fig. 1, Additional file 3). 
In contrast, the vast majority of the recipient pre-FMT samples were dominated by Pro-
teobacteria, a phylum that typically undergoes a drastic expansion in individuals treated 
with vancomycin [28]. After FMT, we observed a dramatic shift in recipient taxonomic 
profiles (Additional file 3, Additional file 2: Fig. S2, Additional file 2: Fig. S3), a widely 
documented hallmark of this procedure [29–31]. Nearly all recipient samples post-FMT 
were dominated by Bacteroidetes and Firmicutes as well as Actinobacteria and Verru-
comicrobia in lower abundances, resembling qualitatively, but not quantitatively, the 
taxonomic profiles of their donors (Additional file  3). The phylum Bacteroidetes was 
over-represented in recipients: even though the median relative abundance of Bacteroi-
detes populations were 5 and 17% in donors A and B, their relative abundance in recipi-
ents post-FMT was 33 and 45%, respectively (Fig. 1, Additional file 3). A single genus, 
Bacteroides, made up 76 and 82% of the Bacteroidetes populations in the recipients of 
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Fig. 1  Detection of FMT donor genomes in FMT recipients and publicly available gut metagenomes. In both 
heat maps, each column represents a donor genome, each row represents a metagenome, and each data 
point represents the detection of a given genome in a given metagenome. Purple rows represent donor 
metagenomes from stool samples collected over 636 days for A donor A and 532 days for B donor B. Orange 
rows represent recipient pre-FMT metagenomes, and blue rows represent recipient post-FMT metagenomes. 
Rows are arranged in descending chronological order with respect to each subject. The intensity of purple, 
orange, and blue color scales represents the detection value for each genome in each metagenome, with 
a minimum detection of 0.25. Genome columns are clustered according to their presence or absence in all 
metagenomes (Euclidean distance and Ward clustering). The three columns to the right of the heatmaps 
display, for each metagenome row: (X) the number of metagenomic short reads in millions, (Y) the percent 
of metagenomic short reads recruited by genomes, and (Z) the taxonomic composition of metagenomes 
(based on metagenomic short reads) at the phylum level. The first row below each heat map (Q) provides 
the phylum-level taxonomy for each donor genome. Finally, the 11 bottommost rows under each heat map 
show the fraction of healthy adult metagenomes from 11 different countries in which a given donor genome 
is detected (if a genome is detected in every individual from a country it is represented with a full bar and a 
value of 1). The dendrograms on the right-hand side of the country layers organize countries based on the 
detection patterns of genomes (Euclidean distance and Ward clustering). Purple and red shaded countries 
represent the two main clusters that emerge from this analysis, where purple layers are industrialized 
countries in which donor genomes are highly prevalent and red layers are less industrialized countries where 
the prevalence of donor genomes is low. A maximum resolution version of this figure is also available at 
https://​doi.​org/​10.​6084/​m9.​figsh​are.​15138​720 [26]

https://doi.org/10.6084/m9.figshare.15138720
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donor A and B, respectively (Additional file  3). The success of the donor Bacteroides 
populations in recipients upon FMT is not surprising given the ubiquity of this genus 
across geographically diverse human populations [32] and the ability of its members to 
survive substantial levels of stress [22, 33]. This initial coarse taxonomic analysis demon-
strates the successful transfer of only some populations, suggesting selective filtering of 
the transferred community.

To generate insights into the genomic content of the microbial community, we first 
assembled short metagenomic reads into contiguous segments of DNA (contigs). Co-
assemblies of 24 donor A and 15 donor B metagenomes independently resulted in 
53,891 and 54,311 contigs that were longer than 2500 nucleotides, and described 0.70 
and 0.79 million genes occurring in 179 and 248 genomes, as estimated by the mode of 
the frequency of bacterial single-copy core genes (Additional file 3). On average, 80.8% 
of the reads in donor metagenomes mapped back to the assembled contigs from donor 
metagenomes, which suggests that the assemblies represented a large fraction of the 
donor microbial communities. Donor assemblies recruited only 43.4% of the reads on 
average from the pre-FMT recipient metagenomes. This number increased to 80.2% for 
post-FMT recipient metagenomes and remained at an average of 76.8% even 1 year post-
FMT (Additional file  3). These results suggest that members of the donor microbiota 
successfully established in the recipient gut and persisted long term.

To investigate functional determinants of microbial colonization by identifying donor 
populations that were successful at colonizing multiple individuals, we reconstructed 
microbial genomes from donor assemblies using sequence composition and differential 
coverage signal as previously described [34, 35]. We manually refined metagenomic bins 
to improve their quality following previously described approaches [36, 37] and only 
retained those that were at least 70% complete and had no more than 10% redundancy 
as predicted by bacterial single-copy core genes [38, 39]. Our binning effort resulted in 
a final list of 128 metagenome-assembled genomes (MAGs) for donor A and 183 MAGs 
for donor B that included members of Firmicutes (n = 265), Bacteroidetes (n = 20), Act-
inobacteria (n = 14), Proteobacteria (n = 7), Verrucomicrobia (n = 2), Cyanobacteria 
(n = 2), and Patescibacteria (n = 1) (Additional file  4). The taxonomy of donor-derived 
genomes largely reflected the taxonomic composition of donor metagenomic short 
reads (Fig. 1, Additional file 3, Additional file 4). While only 20 genomes (mostly of the 
genera Bacteroides and Alistipes) explained the entirety of the Bacteroidetes group, we 
recovered 265 genomes that represented lower abundance but diverse populations of 
Firmicutes (Fig. 1, Additional file 3, Additional file 4).

Metagenomic read recruitment elucidates colonization events

Reconstructing donor genomes enabled us to characterize (1) population-level micro-
bial colonization dynamics before and after FMT using donor and recipient metagen-
omes and (2) the distribution of each donor population across geographically distributed 
humans using 1984 publicly available human gut metagenomes (Fig. 1, Additional file 5).

Our metagenomic read recruitment analysis showed that donor A and B genomes 
recruited on average 77.05 and 83.04%, respectively, of reads from post-FMT metage-
nomes, suggesting that the collection of donor genomes well represents the recipient 
metagenomes post-FMT (Fig.  1). As expected, we detected each donor population in 
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at least one donor metagenome (see “Methods” for “detection” criteria). Yet, only 16% 
of donor A populations were detected in every donor A sample, and only 44% of donor 
B populations were detected in every donor B sample (Fig. 1, Additional file 4), demon-
strating the previously documented dynamism of gut microbial community composition 
over time [11]. A marked increase in the detection of donor populations in recipients 
after FMT is in agreement with the general pattern of transfer suggested by the short-
read taxonomy (Fig.  1): while we detected only 38% of donor A and 54% of donor B 
populations in at least one recipient pre-FMT, these percentages increased to 96% for 
both donors post-FMT (Additional file 4). We note that we observed a higher fraction of 
donor populations in recipients as a function of the FMT delivery method. Following the 
cases of FMT where donor stool was transplanted via colonoscopy, we detected 54.7 and 
33.3% donor genomes in the recipients of donor A (n = 3) and donor B (n = 2), respec-
tively. In contrast, in the cases of FMT where donor stool was transplanted via pills, we 
detected 69.5 and 61.6% donor genomes in the recipients of donor A (n = 2) and donor B 
(n = 3), respectively.

Overall, not every donor population in our dataset was detected in each recipient, but 
the emergence of donor populations in recipients did not appear to be random: while 
some donor populations colonized all recipients, others colonized none (Fig. 1), provid-
ing us with an opportunity to quantify colonization success for each donor population in 
our dataset.

Succession of donor microbial populations in FMT recipients and their prevalence 

in publicly available metagenomes reveal good and poor colonizers

Of the populations that consistently occurred in donor metagenomes, some were 
absent in all or most recipient metagenomes after FMT, and others were continuously 
present throughout the sampling period in both donor and recipient metagenomes 
(Fig.  1). To gain insights into the ecology of donor microbial populations beyond our 
dataset, we explored their occurrence in publicly available healthy gut metagenomes 
through metagenomic read recruitment. This analysis enabled us to consider the preva-
lence of donor populations in FMT recipients and global gut metagenomes, and define 
two groups of donor genomes that represented opposite colonization and prevalence 
phenotypes.

The “good colonizers” comprise those microbial populations that colonized and per-
sisted in all FMT recipients. Intriguingly, these populations were also the most preva-
lent in publicly available gut metagenomes from Canada. Overall, these donor microbial 
populations (1) systematically colonized the majority of FMT recipients, (2) persisted in 
these environments long-term regardless of host genetics or lifestyle, and (3) were prev-
alent in public gut metagenomes outside of our study. In contrast, the so-called “poor 
colonizers” failed to colonize or persist in at least three FMT recipients. These popula-
tions were nevertheless viable in the donor gut environment: not only did they occur 
systematically in donor metagenomes but also they sporadically colonized some FMT 
recipients. Yet, unlike the good colonizers, the distribution patterns of poor colonizers 
were sparse within our cohort, as well as within the publicly available metagenomes. In 
fact, populations identified as poor colonizers were less prevalent than good colonizers 
in each of the 17 different countries we queried. In countries including the USA, Canada, 
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Austria, China, England, and Australia, microbial populations identified as good colo-
nizers occurred in 5 times more people than poor colonizers in the same country (Fig. 1, 
Additional file 4), which suggests that the outcomes of FMT in our dataset were unlikely 
determined by neutral processes. This observation is in contrast with previous studies 
that suggested “dose” (i.e., the abundance of a given population in donor fecal matter) as 
a predominant force that determines outcomes of colonization after FMT [40, 41]. How-
ever, our strain-resolved analysis of colonization events in our data in conjunction with 
the distribution of the same populations in publicly available metagenomes (1) revealed 
a significant correlation between the colonization success of donor populations and their 
prevalence across publicly available metagenomes, and (2) showed that the prevalence of 
a given population across global gut metagenomes can predict its colonization success 
after FMT better than its abundance in the donor stool sample (Wald test, p = 6.3e − 06 
and p = 9.0e − 07) (Additional file 6). Overall, these observations suggest a link between 
the colonization outcomes in our study and global prevalence of the same microbial 
populations and that the succession of donor populations in our data were likely influ-
enced by selective processes that influence colonization outcomes.

Next, we sought to investigate whether we can identify metabolic features that sys-
tematically differ between good colonizers and poor colonizers independent of their 
taxonomy. To conduct such a comparative analysis, we conservatively selected the top 
20 populations from each group that best reflect their group properties by consider-
ing both their success after FMT and their prevalence across publicly available metage-
nomes (Additional file  9). The 20 populations representative of good colonizers were 
dominated by Firmicutes (15 of 20) but also included Bacteroidetes and one Actinobac-
teria population. All populations identified as poor colonizers resolved to Firmicutes 
(Fig. 2, Additional file 9). Genome completion estimates did not differ between good and 
poor colonizers (Wilcoxon rank sum test, p = 0.42) and averaged to 91 and 93%, respec-
tively. But intriguingly, the genome sizes between the two groups differed dramatically 
(p = 2.9e − 06): genomes of good colonizers averaged to 2.8 Mbp while those of poor col-
onizers averaged to 1.6 Mbp. We considered that our bioinformatics analyses may have 
introduced biases to genome lengths, but found a very high correspondence between 
the lengths of the genomes and their best matching reference genomes in the Genome 
Taxonomy Database (GTDB) (R2 = 0.88, p = 5e − 14). Assuming that the generally larger 
genomes of good colonizers may be an indication of an increased repertoire of core 
metabolic competencies compared to poor colonizers, we next conducted a metabolic 
enrichment analysis for quantitative insights (see “Methods”).

Good colonizers are enriched in metabolic pathways for the biosynthesis of essential 

organic compounds

Our enrichment analysis between good and poor colonizers revealed 33 metabolic mod-
ules (out of 443 total in the KEGG module database) that were enriched in good colo-
nizers and none that were enriched in poor colonizers (Fig. 2, Additional file 9). Of all 
enriched modules, 79% were related to biosynthesis, indicating an overrepresentation of 
biosynthetic capabilities among good colonizers as KEGG modules for biosynthesis only 
make up 55% of all KEGG modules (Fig. 2, Additional file 9). Of the 33 enriched modules, 
48.5% were associated with amino acid metabolism, 21.2% with vitamin and cofactor 
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metabolism, 18.2% with carbohydrate metabolism, 24.2% with nucleotide metabolism, 
6% with lipid metabolism, and 3% with energy metabolism (Additional file 9). Metabolic 
modules that were enriched in the good colonizers included the biosynthesis of seven of 
nine essential amino acids, indicating the importance of high metabolic independence 
to synthesize essential compounds as a likely factor that increases success in colonizing 
new environments (Additional file 9). This is further supported by the enrichment of bio-
synthesis pathways for the essential cofactor vitamin B12 (cobalamin), which occurred 
in 67.5% of the good colonizers and only 12.5% of the poor colonizers (Additional file 9). 
Vitamin B12 is structurally highly complex and costly to produce, requiring expression 
of more than 30 genes that are exclusively encoded by bacteria and archaea [42]. In addi-
tion to the biosynthesis of tetrahydrofolate, riboflavin, and cobalamin, the genomes of 
good colonizers had a larger representation of biosynthetic modules for vitamins includ-
ing biotin, pantothenate, folate, and thiamine (Additional file 9). These micronutrients 
are equally essential in bacterial and human metabolism and are important mediators of 
host-microbe interactions [43]. Interestingly, enriched metabolic modules in our analy-
sis partially overlap with those that Feng et al. identified as the determinants of microbial 
fitness using metatranscriptomics and a germ-free mouse model conventionalized with 
microbial isolates of human origin [7].

Even though these 33 metabolic modules were statistically enriched in populations 
identified as good colonizers, some of them also occurred in the genomes of poor col-
onizers (Fig.  2). To identify whether the levels of completion of these modules could 

Fig. 2  Distribution of metabolic modules across genomes of good and poor colonizers. Each data point 
in this heat map A shows the level of completion of a given metabolic module (rows) in a given genome 
(columns). The box-plot on the right-side B compares a subset of poor colonizer and good colonizer 
genomes, where each data point represents the level of completion of a given metabolic module in a 
genome and shows a statistically significant difference between the overall completion of metabolic 
modules between these subgroups (Wilcoxon rank sum test, p = 5.4e − 09). A high-resolution version of this 
figure is also available at https://​doi.​org/​10.​6084/​m9.​figsh​are.​15138​720 [26]

https://doi.org/10.6084/m9.figshare.15138720
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distinguish the good and poor colonizers, we matched six good colonizers that encoded 
modules enriched in these populations to six populations of poor colonizers from the 
same phylum (Fig. 2). Bacterial single-copy core genes estimated that genomes in both 
subgroups were highly complete with a slight increase in average genome completion 
of poor colonizers (93.7%) compared to good colonizers (90.1%). Despite the higher 
estimated genome completion for populations of poor colonizers, estimated metabolic 
module completion values were slightly yet significantly lower in this group (Wilcoxon 
rank sum test with continuity correction, V = 958, p = 5e − 09) (Fig. 2, Additional file 9). 
Thus, these modules were systematically missing genes in populations of poor coloniz-
ers, indicating their functionality was likely reduced, if not absent.

These observations suggest that the ability to synthesize cellular building blocks, cofac-
tors, and vitamins required for cellular maintenance and growth provides a substantial 
advantage during secondary succession, highlighting that the competitive advantages 
conferred by metabolic autonomy may outweigh the additional costs under certain con-
ditions. For the remainder of our study, we use the term “high metabolic independence” 
(HMI) to describe genomic evidence for a population’s ability to synthesize essential 
compounds (that is, high completeness scores of biosynthesis pathways for these com-
pounds indicating the presence of most, if not all, genes required to produce them), and 
“low metabolic independence” (LMI) to describe the absence of, or reduction in, such 
capacity.

While gut microbial ecosystems of healthy individuals include microbes with both low‑ 

and high‑metabolic independence, IBD primarily selects for microbes with high‑metabolic 

independence.

Our results so far show that while the healthy donor environment could support both 
HMI and LMI populations (Fig. 1, Additional file 4), challenging microbes to colonize a 
new environment or to withstand ecosystem perturbation during FMT selects for HMI 
populations (Fig. 2, Additional file 9), suggesting that metabolic independence is a more 
critical determinant of fitness during stress than during homeostasis. Based on these 
observations, it is conceivable to hypothesize that (1) a gut environment in homeostasis 
will support a large variety of microbial populations with a wide spectrum of metabolic 
independence, and (2) a gut environment under stress will select for populations with 
high metabolic independence, potentially leading to an overall reduction in diversity.

To test these hypotheses, we compared genomes reconstructed from a cohort of 
healthy individuals [44] to genomes reconstructed from individuals who were diagnosed 
with inflammatory bowel disease (IBD). Our IBD dataset was composed of two cohorts: 
a set of patients with pouchitis [22], a form of IBD with similar pathology to ulcerative 
colitis [45], and a set of pediatric Crohn’s disease patients [46]. The number of genomes 
per individual and the average level of genome completeness per group were similar 
between healthy individuals and those with IBD: overall, our analysis compared 264 
genomes from 22 healthy individuals with an average completion of 90.4%, 44 genomes 
from 4 pouchitis patients with an average completion of 89.2% and 256 genomes 
from 12 Crohn’s disease patients with an average completion of 94.1% (Additional 
file  10). Intriguingly, similar to the size differences between genomes of HMI popula-
tions and LMI populations (2.8 Mbp versus 1.6 Mbp on average), genomes of microbial 
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populations associated with IBD patients were larger compared to those of microbial 
populations in healthy people and averaged to 3.0 Mbp versus 2.6 Mbp, respectively 
(Additional file  10). This suggests that the environmental filters created by FMT and 
gastrointestinal inflammation both select for microbial populations with larger genomes 
and potentially higher metabolic independence.

Next, we asked whether the completion of metabolic modules associated with coloni-
zation success and resilience during FMT differed between the genomes reconstructed 
from healthy and IBD individuals. The completion of the 33 metabolic modules was 
almost identical between the HMI populations revealed by FMT and microbial popula-
tions in IBD patients (Wilcoxon rank sum test, p = 0.5) (Fig. 3, Additional file 10). In con-
trast, the completion of these metabolic modules was significantly reduced in microbial 
populations in healthy individuals (Wilcoxon rank sum test, p < 1e − 07) (Fig.  3, Addi-
tional file  10). Metabolic modules with the largest differences in completion between 
genomes from healthy and IBD individuals included biosynthesis of cobalamin, arginine, 
ornithine, tryptophan, isoleucine, and the Shikimate pathway (Fig. 3, Additional file 10), 

Fig. 3  Distribution of metabolic modules in genomes reconstructed from healthy individuals and 
individuals with IBD. The boxplots in A show the metabolic module completion values for (1) high and 
(2) low metabolic independence donor genomes identified in this study (blue and yellow), (3) genomes 
from healthy individuals (green), and (4) genomes from individuals with pouchitis (red) and Crohn’s disease 
(orange). Each dot in a given box-plot represents one of 33 metabolic modules that were enriched in HMI 
FMT donor populations and the y-axis indicates its estimated completion. The leftmost panel in A represents 
group averages and red whiskers indicate the median. The rightmost panel in A shows the distribution of 
metabolic modules for individuals within each group. In B the completion values for 10 of the 33 pathways 
are demonstrated as ridge-line plots. Each plot represents a single metabolic module where each layer 
corresponds to an individual, and the shape of the layer represents the completion of a given metabolic 
module across all genomes reconstructed from that individual. A high-resolution version of this figure is also 
available at https://​doi.​org/​10.​6084/​m9.​figsh​are.​15138​720 [26]

https://doi.org/10.6084/m9.figshare.15138720
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a seven-step metabolic route bacteria use for the biosynthesis of aromatic amino acids 
(phenylalanine, tyrosine, and tryptophan) [47].

Our findings show that the same set of biosynthetic metabolic modules that distin-
guish good and poor colonizers during FMT were also differentially associated with 
populations of IBD patients and healthy individuals. In particular, while healthy indi-
viduals harbored microbes with a broad spectrum of metabolic capacity, microbes from 
individuals who suffer from two different forms of IBD had significantly higher biosyn-
thetic independence. It is conceivable that a stable gut microbial ecosystem is more likely 
to support LMI populations through metabolic cross-feeding, where vitamins, amino 
acids, and nucleotides are exchanged between microbes [48]. In contrast, host-mediated 
environmental stress in IBD likely disrupts such interactions and creates an ecological 
filter that selects for metabolic independence, which subsequently leads to loss of diver-
sity and the dominance of organisms with large genomes that are often not as abundant 
or as competitive in states of homeostasis.

These observations have implications for our understanding of the hallmarks of 
healthy gut microbial ecosystems. Defining the “healthy gut microbiome” has been 
a major goal of human gut microbiome research [49], which still remains elusive [50]. 
Despite comprehensive investigations that considered core microbial taxa [51, 52] or 
guilds of microbes that represent coherent functional groups [53], the search for “bio-
markers” of healthy gut microbiomes is ongoing [54]. Our findings indicate that beyond 
the taxonomic diversity of a microbial community, a broad range of metabolic independ-
ence represents a defining feature of a healthy gut microbiome. Conversely, our findings 
also suggest that an enrichment of metabolically independent populations could serve 
as an indicator of environmental stress in the human gut. Detection of these metabolic 
markers is not influenced by fluctuations in taxonomic composition or diversity, and 
represents a quantifiable feature of microbial communities through genome-resolved 
metagenomic surveys.

Our findings offer a new, taxonomy-independent perspective on the determinants of 
microbial resilience in the human gut environment under stress. Yet, our study is lim-
ited to well-known metabolic pathways—which, given the extent of the unknown coding 
space in microbial genomes [55], are likely far from complete—as well as by our ability 
to recognize gene function, which is determined by the sequences described in public 
databases that favor well-studied microbial organisms (Additional file 6). Thus, conserv-
atively put, the enrichment of biosynthetic modules in HMI populations suggests that 
the ability to synthesize essential biological compounds is necessary but likely insuffi-
cient to survive environmental stress in the gut. Nevertheless, the finding that the same 
metabolic modules that promote colonization success after FMT are also the hallmarks 
of resilience in IBD suggests the presence of unifying ecological principles that govern 
microbial diversity in distinct modes of stress, which warrants deeper investigation.

Conclusions
Our study identifies high metabolic independence conferred by the biosynthetic capacity 
for amino acids, nucleotides, and essential micronutrients as a distinguishing hallmark 
of microbial populations that colonize recipients of FMT and that thrive in IBD patients. 
These findings highlight the functional complexity of the human gut microbiome whose 
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various interactions with the host are shaped through a network of microbial interac-
tions such as cross-feeding of macro- and micronutrients. Our study offers a simple 
model that posits the following: microbial populations that are metabolically independ-
ent and those that lack the means to synthesize essential metabolites co-occur in a 
healthy gut environment in harmony, where their differential resilience to stress is indis-
cernible by their taxonomy or relative abundance. However, the challenges associated 
with the transfer to a new gut environment through FMT, or with host-mediated stress 
through IBD, initiate an ecological filter that selects for microbes that can self-sustain in 
the absence of ecosystem services associated with states of homeostasis. This model pro-
vides a hypothesis that explains the dominance of low-abundance members of healthy 
gut environments under stressful conditions, without any necessary direct causal associ-
ation with disease state. If the association between particular microbial taxa and disease 
is solely driven by their superior metabolic independence, microbial therapies that aim 
to treat complex diseases by adding microbes associated with healthy individuals will 
be unlikely to compete with the adaptive processes that regulate complex gut microbial 
ecosystems.

Methods
Sample collection and storage

We selected our samples from a subset of individuals who participated in a randomized 
clinical trial [56]. Our selection criteria took into consideration multiple factors that 
were not applicable to all participants of the clinical study. Briefly, we aimed to identify 
(1) donors that contributed a large number of fecal samples over long periods of time 
(to maximize the number and quality of genomes from metagenomes and to be able to 
identify the extent of intrapersonal variability of the microbiota and its potential impact 
on our results), (2) donors whose feces were transplanted to the largest number of recip-
ients (to be able to discuss the colonization dynamics of the same donor populations 
in different individuals accurately), (3) multiple recipients for each donor that received 
FMT via different methods, such as colonoscopy versus pills (to be able to better under-
stand the generalizability of our downstream observations independent of the delivery 
method), and (4) recipients that were followed the longest period of time after FMT (to 
be able to follow donor population dynamics accurately). We did not consider factors 
that may impact the microbial community composition (such as age, gender, or diet) to 
homogenize the recipient cohort to observe overarching microbial patterns after FMT 
that are beyond environmental factors dictated by the host. Based on these criteria, we 
identified two donors (DA and DB), and 5 FMT recipients for each donor. All recipients 
received vancomycin for a minimum of 10 days pre-FMT at a dose of 125 mg four times 
daily. Three DA and two DB recipients received FMT via pill, and two DA and three DB 
recipients received FMT via colonoscopy. All recipients had recurrent C. difficile infec-
tion before FMT, and two DA recipients and one DB recipient were also diagnosed with 
ulcerative colitis (UC). Twenty-four stool samples were collected from the DA donor 
over a period of 636 days, and 15 stool samples were collected from the DB donor over 
a period of 532 days. Between 5 and 9 stool samples were collected from each recipi-
ent over periods of 187 to 404 days, with at least one sample collected pre-FMT and 4 
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samples collected post-FMT. This gave us a total of 109 stool samples from all donors 
and recipients. Samples were stored at − 80  °C (Additional file  2: Fig. S1, Additional 
file 1).

Metagenomic short‑read sequencing

We extracted the genomic DNA from frozen samples according to the centrifuga-
tion protocol outlined in MoBio PowerSoil kit with the following modifications: cell 
lysis was performed using a GenoGrinder to physically lyse the samples in the MoBio 
Bead Plates and Solution (5–10 min). After final precipitation, the DNA samples were 
resuspended in TE buffer and stored at − 20  °C until further analysis. Sample DNA 
concentrations were determined by PicoGreen assay. DNA was sheared to ~ 400  bp 
using the Covaris S2 acoustic platform, and libraries were constructed using the 
Nugen Ovation Ultralow kit. The products were visualized on an Agilent Tapestation 
4200 and size-selected using BluePippin (Sage Biosciences). The final library pool was 
quantified with the Kapa Biosystems qPCR protocol and sequenced on the Illumina 
NextSeq500 in a 2 × 150 paired-end sequencing run using dedicated read indexing.

‘Omics workflows

Whenever applicable, we automated and scaled our ‘omics analyses using the bioin-
formatics workflows implemented by the program “anvi-run-workflow” [37] in anvi’o 
7.1 [57, 58]. Anvi’o workflows implement numerous steps of bioinformatics tasks 
including short-read quality filtering, assembly, gene calling, functional annotation, 
hidden Markov model search, metagenomic read recruitment, metagenomic binning, 
and phylogenomics. Workflows use Snakemake [59] and a tutorial is available at the 
URL http://​meren​lab.​org/​anvio-​workf​lows/ [60]. The following sections detail these 
steps.

Taxonomic composition of metagenomes based on short reads

We used Kraken2 v2.0.8-beta [61] with the NCBI’s RefSeq bacterial, archaeal, viral, 
and viral neighbors genome databases to calculate the taxonomic composition within 
short-read metagenomes.

Assembly of metagenomic short reads

To minimize the impact of random sequencing errors in our downstream analyses, 
we used the program “iu-filter-quality-minoche” to process short metagenomic reads, 
which is implemented in illumina-utils v2.11 [62] and removes low-quality reads 
according to the criteria outlined by Minoche et al. [63]. IDBA_UD v1.1.2 [64] assem-
bled quality-filtered short reads into longer contiguous sequences (contigs), although 
we needed to recompile IDBA_UD with a modified header file so it could process 
150 bp paired-end reads.

Processing of contigs

We use the following strategies to process both sequences we obtained from our 
assemblies and those we obtained from reference genomes. Briefly, we used (1) 

http://merenlab.org/anvio-workflows/
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“anvi-gen-contigs-database” on contigs to compute k-mer frequencies and iden-
tify open reading frames (ORFs) using Prodigal v2.6.3 [65], (2) “anvi-run-hmms” to 
identify sets of bacterial [66] and archaeal [67] single-copy core genes using HMMER 
v3.2.1 [68], (3) “anvi-run-ncbi-cogs” to annotate ORFs with functions from the 
NCBI’s Clusters of Orthologous Groups (COGs) [69], and (4) “anvi-run-kegg-kofams” 
to annotate ORFs with functions from the KOfam HMM database of KEGG orthologs 
(KOs) [70, 71]. To predict the approximate number of genomes in metagenomic 
assemblies, we used the program “anvi-display-contigs-stats,” which calculates the 
mode of the frequency of single-copy core genes as described previously [72].

Metagenomic read recruitment, reconstructing genomes from metagenomes, 

determination of genome taxonomy, and ANI

We recruited metagenomic short reads to contigs using Bowtie2 v2.3.5 [73] and con-
verted resulting SAM files to BAM files using samtools v1.9 [74]. We profiled the result-
ing BAM files using the program “anvi-profile” with the flag “–min-contig-length” set 
to 2500 to eliminate shorter sequences to minimize noise. We then used the program 
“anvi-merge” to combine all read recruitment profiles into a single anvi’o merged profile 
database for downstream visualization, binning, and statistical analyses (the https://​doi.​
org/​10.​6084/​m9.​figsh​are.​14331​236 [75] gives access to reproducible data objects). We 
then used “anvi-cluster-contigs” to group contigs into 100 initial bins using CONCOCT 
v1.1.0 [76], “anvi-refine” to manually curate initial bins with conflation error based on 
tetranucleotide frequency and differential coverage signal across all samples, and “anvi-
summarize” to report final summary statistics for each gene, contig, and bin. We used 
the program “anvi-rename-bins” to identify bins that were more than 70% complete and 
less than 10% redundant, and store them in a new collection as metagenome-assembled 
genomes (MAGs), discarding lower quality bins from downstream analyses. GTBD-tk 
v0.3.2 [77] assigned taxonomy to each of our MAGs using GTDB r89 [78], but to assign 
species- and subspecies-level taxonomy for “DA_MAG_00057,” “DA_MAG_00011,” 
“DA_MAG_00052,” and “DA_MAG_00018,” we used “anvi-get-sequences-for-hmm-
hits” to recover DNA sequences for bacterial single-copy core genes that encode riboso-
mal proteins, and searched them in the NCBI’s nucleotide collection (nt) database using 
BLAST [79]. Finally, the program “anvi-compute-genome-similarity” calculated pairwise 
genomic average nucleotide identity (gANI) of our genomes using PyANI v0.2.9 [80].

Criteria for MAG detection in metagenomes

Using mean coverage to assess the occurrence of populations in a given sample based 
on metagenomic read recruitment can yield misleading insights, since this strategy can-
not accurately distinguish reference sequences that represent very low-abundance envi-
ronmental populations from those sequences that do not represent an environmental 
population in a sample yet still recruit reads from non-target populations due to the 
presence of conserved genomic regions. Thus, we relied upon the “detection” metric, 
which is a measure of the proportion of the nucleotides in a given sequence that are cov-
ered by at least one short read. We considered a population to be detected in a metage-
nome if anvi’o reported a detection value of at least 0.25 for its genome (whether it was 

https://doi.org/10.6084/m9.figshare.14331236
https://doi.org/10.6084/m9.figshare.14331236
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a metagenome-assembled or isolate genome). Values of detection in metagenomic read 
recruitment results often follow a bimodal distribution for populations that are present 
and absent (see Additional file 2: Fig. S2 in ref. [81]), thus 0.25 is an appropriate cutoff to 
eliminate false-positive signal in read recruitment results for populations that are absent.

Identification of MAGs that represent multiple subpopulations

To identify subpopulations of MAGs in metagenomes, we used the anvi’o command 
“anvi-gen-variability-profile” with the “–quince-mode” flag which exported single-
nucleotide variant (SNV) information for all MAGs after read recruitment. We then 
used DESMAN v2.1.1 [82] to analyze SNVs to determine the number and distribution 
of subpopulations represented by a single genome. To account for non-specific map-
ping that can inflate the number of estimated subpopulations, we removed any sub-
population that made up less than 1% of the entire population explained by a single 
MAG. To account for noise due to low coverage, we only investigated subpopulations 
for MAGs for which the mean non-outlier coverage of single-copy core genes was at 
least 10X.

Criteria for colonization of a recipient by a MAG for colonization dynamics analyses 

(Additional file 6)

We applied the set of criteria described in Additional file  2: Fig. S4 to determine 
whether or not a MAG successfully colonized a recipient, and to confidently assign 
colonization or non-colonization phenotypes to each MAG/recipient pair where 
the MAG was detected in the donor sample used for transplant into the recipient. If 
these criteria were met, we then determined whether the MAG was detected in any 
post-FMT recipient sample taken more than 7 days after transplant. If not, the MAG/
recipient pair was considered a non-colonization event. If the MAG was detected in 
the recipient greater than 7  days post-FMT, we used subpopulation information to 
determine if any subpopulation present in the donor and absent in the recipient pre-
FMT was detected in the recipient more than 7 days post-FMT. If this was the case, 
we considered this to represent a colonization event. See Additional file 2: Fig. S4 for 
a complete outline of all possible cases.

Phylogenomic tree construction

To concatenate and align amino acid sequences of 46 single-copy core [66] riboso-
mal proteins that were present in all of our Bifidobacterium MAGs and reference 
genomes, we ran the anvi’o command “anvi-get-sequences-for-hmm-hits” with the “–
return-best-hit,” “–get-aa-sequence,” and “—concatenate” flags, and the “–align-with” 
flag set to “muscle” to use MUSCLE v3.8.1551 [83] for alignment. We then ran “anvi-
gen-phylogenomic-tree” with default parameters to compute a phylogenomic tree 
using FastTree 2.1 [84].

Analysis of metabolic modules and enrichment

We calculated the level of completeness for a given KEGG module [85, 86] in our 
genomes using the program “anvi-estimate-metabolism,” which leveraged previous 



Page 16 of 21Watson et al. Genome Biology           (2023) 24:78 

annotation of genes with KEGG orthologs (KOs) (see the section “Processing of 
contigs”). Then, the program “anvi-compute-functional-enrichment” determined 
whether a given metabolic module was enriched in a group of genomes based on the 
output from the program “anvi-estimate-metabolism.” The URL https://​anvio.​org/m/​
anvi-​estim​ate-​metab​olism  [87] serves a tutorial for this program which details the 
modes of usage and output file formats. The statistical approach for enrichment anal-
ysis is defined elsewhere [37], but briefly it computes enrichment scores for functions 
(or metabolic modules) within groups by fitting a binomial generalized linear model 
(GLM) to the occurrence of each function or complete metabolic module in each 
group, and then computing a Rao test statistic, uncorrected p-values, and corrected 
q-values. We considered any function or metabolic module with a q-value less than 
0.05 to be “enriched” in its associated group if it was also at least 75% complete and 
present in at least 50% of the group members.

Determination of MAGs representing good and poor colonizers for metabolic enrichment 

analysis

We classified MAGs as good colonizers if, in all 5 recipients, they were detected in the 
donor sample used for transplantation as well as the recipient more than 7 days post-
FMT. We classified MAGs as poor colonizers as those that, in at least 3 recipients, were 
detected in the donor sample used for FMT but were not detected in the recipient at 
least 7 days post-FMT. We reduced the number of good colonizer MAGs to be the same 
as the number of poor colonizer MAGs for metabolic enrichment analysis by selecting 
only those populations that were the most prevalent in the Canadian gut metagenomes.

Classification of high metabolic independence

We developed a script to calculate the pathwise completeness of the 33 KEGG mod-
ules that were enriched in good colonizers in this study to determine whether a given 
genome resembles HMI or LMI populations. The URL https://​anvio.​org/m/​anvi-​script-​
estim​ate-​metab​olic-​indep​enden​ce [88] serves more information.

Ordination plots

We used the R vegan v2.4–2 package “metaMDS” function to perform nonmetric multi-
dimensional scaling (NMDS) with Horn-Morisita dissimilarity distance to compare tax-
onomic composition between donor, recipient, and global metagenomes. We visualized 
ordination plots using R ggplot2.
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from the same participant are joined by lines with the earliest time point labeled. CAN: Canadian gut metagenomes, 
DA: donor A, DB: donor B, POST: recipients post-FMT, PRE: recipients pre-FMT. Fig. S3. Nonmetric multidimensional 
scaling (NMDS) ordination of the taxonomic composition of the donor and recipient metagenomes at genus level 
based on Morisita-Horn dissimilarity. Samples from the same participant are joined by lines with the earliest time 
point labeled. DA_POST: donor A recipients post-FMT, DA_PRE: donor A recipients pre-FMT, DA: donor A, DB_POST: 
donor B recipients post-FMT, DB_PRE: donor B recipients pre-FMT, DB: donor B. Fig. S4. A flowchart outlining our 
method to assign successful colonization, failed colonization, or undetermined colonization phenotypes to donor-
derived populations in the recipients of that donor’s stool.
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