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Animal life is rhythmic. Here we provide an overview of various

rhythmic behaviors, connected environmental factors and

endogenous mechanisms. We not only cover terrestrial species,

but also highlight aquatic environments with typically complex

interconnected rhythms. We further address diel, seasonal and

potential lunar rhythms ofhumans.Whilewecannot becomplete,

we aim to emphasize three aspects: First, to raise awareness for

the all-encompassing presence of behavioral rhythms and their

importance inecology and evolution. Second, to raise awareness

how limited our mechanistic understanding is, besides analyses

in a small set of model species. Finally, we discuss how

anthropogenic effects can affect behavioral rhythmicity and how

this might affect ecosystems in the future, as ‘For the times they

are a-changin’’.
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Introduction
While few have put it into words just as poetically as Bob

Dylan, it is clear that life is full of changes, many of which

are rhythmic. Environmental cycles impact humans in

various ways, but are also central in shaping the biology

and interactions of countless other species. In fact, the list

of rhythmic behaviors is seemingly endless ([1–4],

Table 1). Abiotic cycles are driven by the celestial move-

ments of earth and moon, as well as the inclination of the

earth axis relative to the sun. The earth’s rotation creates

the day/night cycle, while its revolution around the sun,

together with the inclination of the earth’s axis, results in

annual cycles. Our planet’s rotation and inclination also

shape the global wind and water current system — both

with their own rhythms — partially also depending on
www.sciencedirect.com 
local environmental and global physical interactions. Not

all climate rhythms (e.g. El Niño) are fully understood.

The revolution of the moon around earth and its relative

position to the sun further create light, gravitational and

magnetic cycles of 27.3 days (sidereal period), 29.5 days

(synodic period) and subsets thereof, as well as lunidian

and tidal cycles of 24.8 and 12.4 hours, respectively [2,3].

Other rhythms, such as the about eleven-year cycle of

solar activity exist and others, less prominent to humans,

might not have even been uncovered.

Organisms can either respond directly to these cyclic

changes of their environment or they can anticipate them

with endogenous oscillators (‘clocks’), providing advan-

tage for animal fitness. The endogenous period of these

oscillators corresponds closely to the respective environ-

mental cycle (e.g. a �24 hours circadian oscillator for the

solar day/night cycle, a �29.5 day circalunar oscillator for

the monthly lunar cycle) and can also synchronize physi-

ology and behavior across a population. For most of the

mentioned abiotic cycles reports of corresponding endog-

enous oscillator systems exist [2,5,6,7�].

However, while endogenous oscillator systems improve

species fitness as long as the ecological conditions remain

stable, a too rigid coupling of behavior and physiology to

oscillators limits species adaptation, and hence expansion

potential. This aspect is particularly interesting in the con-

text of large-scale environmental changes in the earth’s past

and future. In order to predict, how animals might respond to

such changes, themechanisms and theirpossiblemodulators

controlling the different rhythms and endogenous oscillators

need to be understood. Yet, while the molecular and cellular

manifestation of circadian clocks in animals have been

unraveled in great detail [5], much less is known about

the mechanistic nature of rhythms and clocks with different

period lengths, for example, circatidal, circalunar [8,9] or

circannual rhythms (reviewed in Ref. [7�]), and about the

pathways by which these clocks affect animal behavior.

While molecular model species are typically analyzed

under highly artificial laboratory conditions, the environ-

mental cycles animals experience and that govern their

behavioral rhythms strongly depend on their natural

habitats. The tropics are mostly dominated by diel light

cycles that are constant throughout the year, while high

latitude habitats experience strong seasonal cycles which

include phases of polar night and midnight sun [10].

Temperature is a rather reliable time cue in most terres-

trial habitats [10], but in large aquatic habitats the heat

capacity of water, currents and vertical mixing often

results in constant or unpredictable temperature
Current Opinion in Neurobiology 2020, 60:55–66
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Table 1

Selection of behavioral rhythms. We present a (far from complete) list of different behavioral rhythms, the factors controlling them and their relevance for the organisms as well as

other species. In cases where examples are mentioned for different rhythmicities, this is because behavioral rhythms can cycle over multiple periods, usually in an interactive manner.

Question marks (?) indicate that the respective points are still under debate or completely unknown

Behavioral process Rhythmicity Example Controlling factor(s) Fitness benefits Ecological relevance Possible

anthropogenic

threats

Reproduction Seasonal Spawning once per year

(e.g. coral Acropora

millepora) [75,76]

Temperature, circannual clock?,

photoperiod?

Mating coordination Massive food burst,

timing of predator

reproduction

Temperature

increase, ocean

acidification?

winter mating (e.g. sheep

Ovis aries) [7�]
Circannual clock, photoperiod Food for offspring Timing of predator

reproduction?

Light pollution

Spawning in spring/

summer (e.g. polychaete

Platynereis dumerilii) [8]

Temperature? Food for offspring ? Temperature

increase

Lunar Spawning after full moon

(e.g. coral Acropora

millepora) [75,76]

Moonlight, circalunar clock Mating coordination,

reduced predation risk

Massive food burst,

timing of predator

reproduction

Light pollution,

ocean

acidification?

Spawning after full moon

(e.g. polychaete

Platynereis dumerilii) [8]

Moonlight, circalunar clock Mating coordination,

reduced predation risk

? Light pollution

Emergence & nuptial

dance at lowest low tide

(e.g. midge Clunio

marinus) [67]

Moonlight, circalunar clock Mating coordination,

offspring protection

? Light pollution

Mating behavior around

new moon (e.g. badger

Meles meles) [55]

Moonlight? Predator avoidance? ? Light pollution

Diel Norcturnal spawning (e.

g.coral Acropora

millepora) [75,76]

Light, circadian clock Mating coordination,

reduced predation risk

Massive food burst,

timing of predator

reproduction

Light pollution,

ocean

acidification?

Nocturnal spawning (e.g.

polychaete Platynereis

dumerilii) [8]

Light, circadian clock Mating coordination,

reduced predation risk

? Light pollution

Emergence & nuptial

dance at lowest low tide

(e.g. midge Clunio

marinus) [67]

Light, circadian clock Mating coordination,

offspring protection

? Light pollution

Larvae release at sunset

(e.g. crab

Rhithropanopeus harrisii)

[116]

Light, circadian clock Reduced predation risk ? Light pollution

Nocturnal egg laying &

emergence (e.g. sea

turtles) [117,118]

Light, circadian clock? Reduced predation risk ? Light pollution,

poaching

Tidal Larvae release at high-

tide transition (e.g.crab

Rhithropanopeus harrisii)

[116]

Water pressure, circatidal clock Larvae dispersal ? ?
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ä
fk
e
r

 a
n
d

 T
e
s
s
m
a
r-R

a
ib
le

 
5
7

Table 1 (Continued )

Behavioral process Rhythmicity Example Controlling factor(s) Fitness benefits Ecological relevance Possible

anthropogenic

threats

Migration Seasonal Latitudinal migration (e.g.

various bird species,

butterfly Danaus

plexippus, hoverflies

Syrphinae) [41,115,119–

121]

Photoperiod, circadian clock,

magnetic compass, sun compass,

temperature

Cold temperature evasion,

increased genetic exchange,

food availability

Dispersal of plants &

small invertebrates,

pollination, parasite

consumption, food

Light pollution,

magnetic fields,

pesticides

Shoreward migration (e.

g. Christmas Island red

crab

Gecarcoidea natalis)

[122,123]

Monsoon rain, others? Terrestrial lifestyle, mating

coordination

? Human

infrastructure

creates obstacles

Lunar Migration & foraging

intensity in nocturnal

birds (Caprimulgus

europeaus)[57�]

Moonlight, circalunar clock? Increased overall migration

speed & coordination

Rhythmic predation

pressure on bird prey

Light pollution

Shoreward migrations

peak at new moon (e.g.

Christmas Island red

crabGecarcoidea natalis)

[122,123]

Moonlight?, circalunar clock? Avoidance of desiccation

and high temperatures

? ?

Diel Vertical migration (e.g.

zooplankton Calanus

finmarchicus) [72]

Light, circadian clock Optimized feeding vs.

predator risk

Shapes pelagic

ecosystems, global

carbon cycle

?

Activity & Inactivity Seasonal Diapause in deep waters

(e.g. copepods Calanus

spec.) [53��,54]

Lipid content?, photoperiod?,

circannual clock?

Winter survival, additional

energy for reproduction

Global carbon cycle,

trophic energy transfer

Temperature

increase, shifts in

phytoplankton

timing

Diel sleep/wake cycle (e.g.

Homo sapiens) [85]

Light, circadian clock Regeneration, predator

avoidance

Temporal niche creation Light pollution

Locomotion (e.g.

horseshoe crab Limulus

polyphemus) [60]

Light, circadian clock Mating coordination Food chain Light pollution

Diel, bimodal? Locomotion/foraging (e.

g. Drosophila

melanogaster) [28,29]

Light, circadian clock Predator avoidance ? ?

Tidal Locomotion (e.g.

horseshoe crab Limulus

polyphemus, acoel

Symsagittifera

roscoffensis, isopod

Eurydice pulchra)

[9,60,124]

Water pressure, vibration, light,

circatidal clock

Mating coordination,

avoidance of displacement,

optimization of feeding/

photosynthesis of symbionts

Food chain Light pollution,

chemical

pollution

Others Activity of deep sea vent/

seep fauna (several taxa)

[125,126]

Water pressure?, currents?,

chemical food cues?

Increased food

consumption?

? ?
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58 Neurobiology of behavior
conditions. In contrast, parameters like oxygen concen-

tration or physical forcing (e.g. due to waves) are mostly

irrelevant on land, but can be highly cyclic in aquatic

habitats like the intertidal zone.

Here we aim to provide an overview on recent findings

how environmental cues and endogenous clocks evoke

rhythms of behavior.

The control by environmental cues
All regularly occurring major behavioral processes have

their time niche(s) during which they preferably occur

(Table 1). The detection of endogenous oscillators

relies on laboratory experiments. Of note, when observ-

ing populations in the absence of entrainment cues, a

lack of synchronized behaviors can also reflect the

desynchronization of the individual oscillators instead

of their absence. For these reasons it is often still

unclear if a specific naturally occurring behavior is

oscillator controlled (Table 1).

The environmental cues evoking rhythmicity and entrain-

ing clock systems are diverse (Table 2) and can send

conflicting information (e.g. light versus temperature).

The same type of cue informs about multiple rhythms

(e.g. light provides diel, monthly & seasonal information),
Table 2

Overview of rhythmic environmental cues. The mentioned mechanisms

rhythms were identified in individual species, but can not be assumed

Rhythmic cue Period Te

Sunlight intensity Daily, Annual B

d

spectral composition Daily, Annual B

d

photoperiod Annual B

d

Moonlight Monthly B

d

Daily (circalunidian) B

d

Temperature Annual B

Daily M

Food availability Annual B

Monthly A

Food availability Daily B

Oxygen concentration Annual A

Daily B

le

Tidal A

Pressure/mechanical forces/vibration

(tides)

(Semi)monthly A

Tidal A

Salinity Tidal A

Magnetic field Daily, tidal, monthly Li
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while also itself being subject to short-term non-cyclic

perturbances (e.g. cloud cover). How do animals sense

these stimuli, prioritize the input, filter for signal/noise

and adjust their behaviors accordingly? Below we some-

what artificially split the sensory cues by types of rhythm for

better readability, but it should be clear that sensory input

for different rhythms occurs at the same time.

Daily cycles

With a focus on land animals as experimental models, light

and temperature are typically considered the most impor-

tant cues for the entrainment of diel behavioral rhythms

and circadian clocks. Light is a complex cue, as different

wavelengths can have different effects on animal rhythms

[11��,12]. Blue light is most prominently referred to for

circadian clock entrainment, likely due to the large propor-

tionof researchfocusingonmammalianentrainmentmech-

anisms. In mammals, light information is transmitted via

melanopsin-positive retinal ganglion cells to the central

brain circadian pacemaker (i.e. the mammal suprachias-

matic nucleus, SCN) [13–15], but also directly modulates

behavior [16�]. However, it has become increasingly clear

that light information provided by rods and cones is also

channeled to the SCN for circadian clock entrainment

[13,17�], and possibly other brain areas. In insects blue
 mediating the cues to endogenous timing systems and behavioral

 to apply generally

rrestrial/aquatic relevance Known mediating mechanism(s)

oth (aquatic ! change with

epth)

Opsins [22], cryptochromes [19]

oth (aquatic ! change with

epth)

Opsins [78], cryptochromes

[127]

oth (aquatic ! change with

epth)

External coincidence via

melatonin & eya3 (pituitary) [7�],
opsins [128]

oth (aquatic ! change with

epth)

Cryptochromes [129], post-

transcriptional? [130], GnRH-like

pathways? (Andreatta et al., in

revision)

oth (aquatic ! change with

epth)

Cryptochromes?, opsins?

oth ?

ostly terrestrial ionotropic receptor 25a [23],

nocte [131]

oth Starvation response?

quatic ?

oth Insulin-triggered cascade [132]

quatic ?

oth (physiological oxygen

vels)

HIF1a [25]

quatic ?

quatic ?

quatic ?

quatic ?

kely both Cryptochromes [133,134],

others?
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light leads to the activation of a light-responsive crypto-

chrome (cry1, also known as L-cry or Drosophila-type cry),

which affects the stability of Timeless and by this re-sets

the phase of the circadian clock [18–20]. In addition to cry1,

light also impacts via several Opsins expressed in the fly’s

eyes and ocelli, likely improving the adjustment of daily

circadian rhythms to different seasons [21,22].

In Drosophila light and temperature jointly affect the

activity rhythm. ionotropic receptor 25a is required for

temperature entrainment of the fly’s circadian clock,

independent of light [23], while nocte integrates both cues

[24�]. In mice diel changes in tissue oxygen levels can

further alter the expression rhythms of circadian clock

genes via hypoxia-inducible factor 1a [25]. Interestingly,

oxygen is also used as an entrainment cue in a sea-

anemone-symbiont relationship, where the endosymbi-

otic algae Symbiodinium sets the 24 hours behavioral

rhythm of its host Aiptasia diaphana. Without symbionts,

the sea-anemone exhibits a circatidal rhythm [26�]. Such

effects on rhythmicity caused by symbionts (or parasites)

even extend to humans. The circadian rhythms of human

gut bacteria and their metabolites can entrain the liver

circadian oscillator and in extend affect human health. In

turn, the gut microbiome shows direct responses to the

host’s eating habits and circadian rhythms, as well as

disruption thereof (reviewed in Ref. [27]). These exam-

ples provide evidence that rhythmic cues are not limited

to the external environment, but also extend to the

internal, physiological level. Thus, the principles of eco-

logical interactions may also help to better understand

rhythmic aspects of human physiology and health.

All these different biotic and abiotic environmental cues

act together in the natural habitat, and it is hence not too

surprising that artificial experimental conditions can

cause different behavioral rhythms than the environmen-

tal cycles in the natural habitat. For example, while

Drosophila melanogaster has a crepuscular activity pattern

in laboratory recordings, experiments under natural light

conditions revealed an additional activity peak in the

afternoon [28,29��]. Similar observations exist for mice

and hamsters [30,31], highlighting the importance of

more naturalistic studies.

Seasonal cycles

For seasonal behaviors and life cycles like hibernations/

diapause, migrations or reproduction (Table 1), the most

relevant environmental terrestrial cues are likely light,

temperature and food availability (Table 2). Photoperiod

(daylength) can be measured by the co-incidence timing of

light signals relative to circadian time, resulting in long-day

or short-day responses [32]. For sheep and mice melatonin,

whose expression is regulated by circadian time and

directly by light, serves as a molecular readout for day-

length. Melatonin controls peak levels of the transcription
www.sciencedirect.com 
factor eya3 by two means. It synchronizes its height phase to

about 12 hours after night onset, causing a peak in the late

night/early morning, depending on daylength. In addition,

melatonin also suppresses eya3 expression. Under long

photoperiods melatonin is absent at the time eya3 peaks.

The resulting increased EYA3 levels together with the

circadian transcription factor TEF result in an upregulation

ofTSHandsubsequentlyhypothalamicDeiodinase2.This

enzyme converts the inactive form of thyroid hormone (T4)

to the active version (T3), which finally stimulates gona-

dotropinsandthedownstream physiological and behavioral

responses (reviewed in Refs. [7�,33]). This switch between

responses seems to be rather binary causing a sharp switch

in behavior [34] at the critical photoperiod [35]. The critical

photoperiod itself can change depending on the environ-

mental temperature [36,37], via an unknown mechanism.

Many species show a latitudinal gradient in their critical

photoperiods corresponding to the latitudinal changes in

day length [10,38�]. In insects and birds this is possibly

connected to differences in allele frequencies of circadian

clock and neuropeptide genes [39–41].

Again, natural light conditions are important. D. melano-
gaster displays more pronounced photoperiodic responses

under natural lights with gradual changes compared to a

rectangular lights on/off regime [42]. These external cues

can either act directly or by entraining an endogenous

circannual oscillator [1,7�,43–48], the latter being partic-

ularly important if the physiological and behavioral

responses need preparation time and/or sensory stimuli

might not be perceived (e.g. awakening from diapause).

The mechanisms of circannual clocks are still poorly

understood, but cyclic changes in chromatin condensation

[7�], as well as histogenesis [49] are being discussed.

While diel and seasonal behavioral rhythms are just as

common in aquatic habitats as they are on land [50], they

are less studied. Medakafish has started to emerge as

functionally well-amenable model to study the role of

seasons. Animals kept under different seasonal conditions

exhibit multifold changes in their retinal opsins and photo-

transduction repertoire, modulating visual perception and

subsequent behavior [51]. Interestingly, also humans

exhibit such seasonal changes in color perception, albeit

the underlying mechanisms are still unclear [52].

An ecologically crucially relevant emerging marine model

is the copepod Calanus finmarchicus (Figure 1, Table 1),

which reproduces and feeds in surface waters in spring/

summer and overwinters in deeper water layers. The

initiation and termination of the overwintering phase

(referred to as diapause) have been studied intensively,

but the controlling factors are still unclear [53��]. Seasonal

copepod gene expression, physiology and circadian clock

rhythmicity suggest that initiation could be controlled by

internal lipid levels and a critical photoperiod potentially

affected by temperature and food availability. In contrast,
Current Opinion in Neurobiology 2020, 60:55–66
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Figure 1

Spring/Summer Winter

Current Opinion in Neurobiology

Environmental and biological rhythms. The figure illustrates different diel and seasonal rhythms on the example of a polar pelagic ecosystem.

Spring/Summer: (1) Clear day/night cycle and midnight sun in summer, (2) Phytoplankton bloom triggered by light after ice breakup. (3)

Pronounced zooplankton diel vertical migration (DVM) ! desynchronized during midnight sun. (4) Larger predators follow zooplankton migration.

(5) Seasonal migrators benefit from food availability. (6) Seal reproduction anticipates ice breakup and productive season. (7) Diel activity rhythms

of benthic species. (8) High productivity and vertical migrations contribute to carbon export. Winter: (9) Weak day/night cycle or permanent night.

(10) Moonlight can directly affect DVM. (11) DVM weaker but still existent. (12) Minimal carbon export. (13) Seasonal sea ice cover ! delayed

relative to photoperiod. (14) Seasonal changes in habitat usage. (15) Benthic diel rhythms can persist in polar night. (16) Seasonal copepod

diapause at depth ! metabolization of energy storages contributes to carbon export. References: [54,70�,71�,135–141].
a circannual clock could trigger the copepod’s emergence

from diapause [54].

Lunar, lunidian and tidal cycles

Moon-related behavioral cycles with a circatidal period

(�12.4 hours), circalunidian (�24.8 hours) or a circa(semi)

lunar period (�14.8/�29.5 days) are especially well-docu-

mented in the marine environment, but have also been

observed in terrestrial and limnic habitats [55,56,57�].
Most intertidal species display tidal rhythms in activity

and foraging and for several species these rhythms also

persist under constant conditions, implying an endoge-

nous oscillator [2,3,58,59]. So far, the mechanisms

entraining and maintaining circatidal rhythmicity are

mostly unclear. In the horseshoe crab Limulus polyphemus
water pressure is the major circatidal entrainment cue,
Current Opinion in Neurobiology 2020, 60:55–66 
while light and temperature are of minor importance

(Table 2) [60]. The circatidal activity rhythm of the

isopod Eurydice pulchra can be entrained by mechanical

stimulation, and a knock-down of period and circadian

clock disruptions by LL did not abolish it, while a CK1d/e

inhibitor led to period lengthening of both circadian and

circatidal periods (Table 1) [9]. This result and other

behavioral studies suggest that while circadian and cir-

catidal clocks can be separated, common molecular

denominators exists [2,3,9,61–63].

Circa(semi)lunar rhythms occur in various species from

corals to vertebrates and typically time reproductive behav-

ior and physiology. The moon determines the days when

gametes are ready for release and particular mating beha-

viors will be exerted [64]. Often, this timing is interlinked

with circalunidian or circadian timing, that is, the exact
www.sciencedirect.com
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mating and spawning happens only at specifics hours that

themselves shiftwith themoon phase [65,66]. For example,

in the intertidal midge Clunio marinus both circalunar and

circadian clocks, genetically adapted to match the local

tidal regime, determine the exact timing of eclosion and

subsequent mating [67]. In the bristle worm Platynereis
dumerilii the circalunar clock and light modulate circadian

clock gene expression and locomotor activity, while a

chemical disruption of P. dumerilii’s circadian clock did

not disrupt the circalunar spawning rhythm. This implies

that circadian clock oscillations are not required for circa-

lunar core clock functions [8,68,69].

There are several examples for circalunar behavioral

rhythms (Table 1) that are so impressive that they even

serve as touristic advertisement. The mass migrations of

the red crabs on the Christmas islands, the Palolo worms’

nuptial dances close to Samoa, the ostracods’ biolumines-

cent mating signals close to Belize and the mass spawning

events of corals at the Great Barrier Reef unequivocally

demonstrate the influence of lunar (and connected solar)

timing on biology and ecology (Table 1). Moonlight can

further directly modulate zooplankton diel vertical migra-

tions (DVM) in polar habitats (Figure 1) [70�], while

DVM itself is at least partially controlled by a circadian

clock (Table 1) [71�,72].

Probably the so far best-studied example for the interaction

ofdifferent rhythmsare theannualmassspawningeventsof

corals [73–75]. Multiple detailed transcriptomic studies

have started to identify potential molecular players in

the coral Acropora, millepora [75–77]. However, functional

studies will be required to disentangle the roles of individ-

ual genes in the interacting rhythms. In the jellyfish Clytia
hemisphaerica disruption of Opsin9 implicates this photore-

ceptor as trigger for gamete release [78] and a similar

mechanism may help to coordinate coral spawning.

Especially the latter examples illustrate the complexity of

timing systems in the marine environment, the environ-

ment, in which animal life with its rhythms originally

evolved [79,80]. It is hence likely that their better under-

standing will also help to unravel the foundations on

which human rhythmicity is built.

Human rhythms of behavior
The fact that circadian timing is very important for human

behavior and physiology and that its disruptions results in

severe health consequences is well-established and cov-

ered in detail elsewhere, including clinically relevant

recommendations [81–83], impacts on fear behavior, food

consumption, cognition, sleep and the interconnection to

hormonal control and possible genetically anchored inter-

individual variables [84,85].

The roles of other rhythms and possible oscillators are less

clear. Strong evidence for human behavioral seasonality
www.sciencedirect.com 
comes from mood disorders, for example, seasonal affec-

tive disorder (SAD) [86] and the increase of suicides

during spring times [87,88]. However, the extent of

human seasonality and the mechanisms behind it are

unclear. Lunar-related behavioral rhythms in humans

are still subject to intensive discussions. This is likely

because reported instances are sporadic and sometimes

contradictory, such as in sleep studies where smaller

studies showed statistically significant lunar-phase differ-

ences whereas a study that pooled data over a large

geographic range did not [89–91]. The sleep studies were

performed under laboratory conditions, that is, in the

absence of moonlight. This implies that any effect should

be caused by an endogenous oscillator with a circalunar

period, �29.5 days. The menstrual cycle of human

females fits this description and it is clear that it is

connected to a range of hormonal changes, influencing

mood and behavior. Evidence for monthly hormonal

changes have also been described for men, albeit the

results should be treated with caution due to the small

study group size [92]. If such endogenous monthly hor-

monal (i.e. circalunar) cycles can be locally synchronized

across a population by environmental cues, then its

effects — including behavioral alterations — will be

phase-synchronized with the natural moon phases. This

could explain synchronizations across smaller groups.

Alternatively, the moon can still function as a non-photic

weak zeitgeber and depending on the signal/noise ratio

this might be picked up in some studied cohorts.

Interestingly, recent work on two small-scale African

populations in their local environments showed that

sleep/activity differences correlated with the lunar cycle

in hunter-gatherers, but not in rural agriculturists [93].

Another heavily debated field is the connection between

birth rate and lunar cycle. Studies performed during the

1940ies–1960ies repeatedly observed statistically signifi-

cant correlations, while they vanished from the studies

performed later on and the reasons are debated (reviewed

in Ref. [64]).

Finally, bipolar mood cycles were found to oscillate in

synchrony with three types of lunar cycles: the 14.8-day

spring–neap cycle, the 13.7-day declination cycle and the

206-day cycle of perigee-syzygies. Additional analyses of

body temperature cycles suggest that this could be

explained by a periodic entrainment of the circadian pace-

maker to the slightly longer circalunidian (24.8 hours) cycle

of the moon and by this resulting in pacemaker’s phase-

relationship to sleep that triggers switches from depression

to mania [94��]. Overall, the possibility of lunar rhythms

impacting on human behavior should not be too readily

dismissed. Humans are just another species of animals after

all. Future work on animal models with clear circalunar

rhythmicity will allow to uncover molecular mechanisms

which can subsequently be tested in humans.
Current Opinion in Neurobiology 2020, 60:55–66
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Times of environmental change
Rhythms and their underlying clocks likely allow animals

to be optimally prepared for the environmental conditions

of their ecological niches. However, changing environ-

mental conditions will force species to shift their habitats

and temporal niches. Already in the past, adaptation to

global climate change and radiation required the adapta-

tion to new ecological niches. A prominent example for

this is the radiation of nocturnal mammals to all timing

niches after the dinosaur extinction, suggesting that a

certain level of flexibility in the underlying clock systems

is advantageous [95]. Nevertheless, the adaptive capaci-

ties of behavioral rhythmicity and the corresponding

oscillator systems have so far received little attention.

In the future, behavioral rhythms of animals will be affected

by several major developments: Environmental changes due

to anthropogenic CO2 emissions affect ecosystems on a

global scale. Human infrastructure and the associated light

pollution disrupt behavior and physiology of animals and

humans. Another biologically highly relevant effect is the

increase of environmental temperatures. Species try to stay

within their optimal temperature range to avoid heat/cold

stress, meaning that increasing temperatures cause shifts to

higher (colder) latitudes, as observed in various terrestrial and

marine species [96–99]. These shifts to higher latitudes are

accompanied by more pronounced seasonal changes in pho-

toperiod and ultimately phases of permanent darkness or

sunlight in polar regions. Photoperiod is unaffected by cli-

mate change and theseextremelightconditionscould inhibit

latitudinal distribution shifts leading to fitness loss due to

suboptimal temperatures [100]. Alternatively, the circadian

clock systems, while itself less affected by temperature

changes due to its intrinsic temperature compensation mech-

anisms, may have to work under photoperiods that exceed

their entrainment range, resulting in circadian arrhythmicity.

While the originally tropic, strongly rhythmic D. melanogaster
loses its rhythmicity under extreme photoperiods, high lati-

tude Drosophila species already exhibit weaker overall circa-

dian rhythmicity and higher plasticity [101��].

Especially for aquatic habitats in high latitudes, ecological

timing mismatches in food-chains are being reported, for

example, while seasonal phytoplankton blooms tend to

occur earlier, the behavioral and physiological rhythms of

higher tropic levels like zooplankton or predatory fish

change less (Figure 1) [102–105].

However, disruptive effects by increasing temperature

are likely not be restricted to animals in higher latitudes.

Possibly connected to higher temperatures, behavioral

timing alteration have been reported for large populations

of red sea corals, which start to exhibit a loss of spawning

synchrony [106].

Nowadays, natural darkness is virtually absent in areas

inhabited by humans. Artificial light at night (ALAN)
Current Opinion in Neurobiology 2020, 60:55–66 
delays the human circadian cycle and shortens rest times

[107], likely contributing to psychological disorders [108],

while also a variety of animal rhythms are affected

[109,110]. Bird melatonin levels are reduced by ALAN,

affecting diel activity patterns and seasonal reproduction

times [111]. A recent study provides compelling reason-

ing that the dramatic decline of the European hamster is

largely due to timing problems of its circannual repro-

ductive cycle, part of this problem might be caused by

light pollution [112��]. In aquatic habitats nocturnal light

reduced the magnitude of DVM in the model crustacean

Daphnia [113], while similar effects were observed in an

Arctic zooplankton community during polar night [114].

Further and largely unexplored impacts on animal behav-

ioral rhythms can arise from chemicals (e.g. pesticides,

sewage or pharmaceutical drugs). For example, the inges-

tion of insecticide-treated seeds delays bird migrations.

This likely reduces their fitness due to a delayed arrival at

their destination [115].

As human impact on earth will likely not decrease in the

future, a detailed understanding of mechanisms control-

ling behavioral rhythms will be essential to make predic-

tions about future ecosystem changes, as well as to

propose measures to minimize anthropogenic effects.

Conclusions
Here we aim to emphasize the omnipresence of rhythms

in animal behaviors and how little we know about them,

beyond daily timing mechanisms in mouse and

Drosophila. Yet, understanding different clocks and

rhythms other than circadian, the integration of different

timing regimes in one individual and in different species

adapted to different ecological niches is crucial to under-

stand how networks of species might respond to changes

in their current ecological niches due to climate change

and artificial light at night. Understanding the interplay of

different rhythms is likely also important for a better

understanding of human behavior and behavioral disor-

ders, for example, sleep and mood. We also put a specific

focus on the aquatic habitats due to the complexity of this

environment and the interacting behavioral rhythms and

clock system resulting from it. In summary, this is a strong

pledge for dedicated studies on the chronobiological

mechanisms underlying behavior in animals from diverse

habitats, including land and sea.
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Özkurt S, Neumann K, Song Z, Colak E, Johnston J et al.: Golden
Current Opinion in Neurobiology 2020, 60:55–66

http://www.fwf.ac.at/en/
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0005
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0005
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0005
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0005
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0010
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0010
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0010
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0015
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0015
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0015
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0020
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0020
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0025
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0025
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0025
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0030
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0030
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0035
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0035
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0040
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0040
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0040
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0040
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0045
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0045
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0045
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0045
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0050
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0050
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0050
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0055
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0055
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0055
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0055
http://dx.doi.org/10.1101/698480
http://dx.doi.org/10.1101/698480
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0065
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0065
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0065
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0070
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0070
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0070
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0070
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0075
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0075
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0080
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0080
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0080
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0080
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0085
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0085
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0085
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0085
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0090
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0090
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0090
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0090
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0095
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0095
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0095
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0095
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0100
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0100
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0105
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0105
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0105
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0110
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0110
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0110
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0115
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0115
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0115
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0115
http://dx.doi.org/10.1016/j.cub.2018.04.001
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0125
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0125
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0125
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0130
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0135
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0140
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0140
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0140
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0140
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0145
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0150
http://refhub.elsevier.com/S0959-4388(19)30112-6/sbref0150


64 Neurobiology of behavior
hamsters are nocturnal in captivity but diurnal in nature. Biol
Lett 2008, 4:253-255.

31. Daan S, Spoelstra K, Albrecht U, Schmutz I, Daan M, Daan B,
Rienks F, Poletaeva I, Dell’Omo G, Vyssotski A et al.: Lab mice in the
field: unorthodox daily activity and effects of a dysfunctional
circadian clock allele. J Biol Rhythms 2011, 26:118-129.

32. Bünning E: Circadian rhythms and the time measurement in
photoperiodism. Cold Spring Harb Symp Quant Biol 1960,
25:249-256.

33. Hut RA: Photoperiodism: shall EYA compare thee to a
summer’s day? Curr Biol 2011, 21:R22-R25.

34. Wood SH, Christian HC, Miedzinska K, Saer BRC, Johnson M,
Paton B, Yu L, McNeilly J, Davis JRE, McNeilly AS et al.: Binary
switching of calendar cells in the pituitary defines the phase of
the circannual cycle in mammals. Curr Biol 2015, 25:2651-2662.

35. Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A,
Kankare M: Seasonal gene expression kinetics between
diapause phases in Drosophila virilis group species and
overwintering differences between diapausing and non-
diapausing females. Sci Rep 2015, 5:11197.

36. Hairston NG, Kearns CM: The interaction of photoperiod and
temperature in diapause timing: a copepod example. Biol Bull
1995, 189:42-48.

37. Gomi T: Geographic variation in critical photoperiod for diapause
induction and its temperature dependence in Hyphantria cunea
Drury (Lepidoptera: Arctiidae). Oecologia 1997, 111:160-165.

38.
�

Yamaguchi K, Goto SG: Distinct physiological mechanisms
induce latitudinal and sexual differences in the photoperiodic
induction of diapause in a fly. J Biol Rhythms 2019, 34:293-306
http://dx.doi.org/10.1177/0748730419841931

By comparing critical photoperiod for diapause induction in fly popula-
tions from different latitudes, the study identifies the mechanistic principle
by which photoperiod is measured and further explores the basis of
sexual differences in critical photoperiod.

39. Paolucci S, van de Zande L, Beukeboom LW: Adaptive latitudinal
cline of photoperiodic diapause induction in the parasitoid
Nasonia vitripennis in Europe. J Evol Biol 2013, 26:705-718.

40. Pruisscher P, Nylin S, Gotthard K, Wheat CW: Genetic variation
underlying local adaptation of diapause induction along a cline
in a butterfly. Mol Ecol 2018, 27:3613-3626.

41. Ralston J, Lorenc L, Montes M, DeLuca WV, Kirchman JJ,
Woodworth BK, Mackenzie SA, Newman A, Cooke HA,
Freeman NE et al.: Length polymorphisms at two candidate
genes explain variation of migratory behaviors in blackpoll
warblers (Setophaga striata). Ecol Evol 2019, 9:8840-8855.

42. Nagy D, Andreatta G, Bastianello S, Anduaga AM, Mazzotta G,
Kyriacou CP, Costa R: A semi-natural approach for studying
seasonal diapause in Drosophila melanogaster reveals robust
photoperiodicity. J Biol Rhythms 2018, 33:117-125.

43. Campbell RW, Boutillier P, Dower JF: Ecophysiology of
overwintering in the copepod Neocalanus plumchrus:
changes in lipid and protein contents over a seasonal cycle.
Mar Ecol Prog Ser 2004, 280:211-226.

44. Monecke S, Saboureau M, Malan A, Bonn D, Masson-Pevet M,
Pevet P: Circannual phase response curves to short and long
photoperiod in the European hamster. J Biol Rhythms 2009,
24:413-426.

45. Miyazaki Y, Numata H: Exhibition of circannual rhythm under
constant light in the varied carpet beetle Anthrenus verbasci.
Biol Rhythm Res 2010, 41:441-448.

46. Lu W, Meng Q-J, Tyler NJC, Stokkan K-A, Loudon ASI: A
circadian clock is not required in an arctic mammal. Curr Biol
2010, 20:533-537.

47. Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R, Barnes BM,
Dominoni D: Annual rhythms that underlie phenology:
biological time-keeping meets environmental change. Proc R
Soc B Biol Sci 2013, 280:20130016.

48. Jørgensen EH, Johnsen HK: Rhythmic life of the Arctic charr:
adaptations to life at the edge. Mar Genomics 2014, 14:71-81.
Current Opinion in Neurobiology 2020, 60:55–66 
49. Hazlerigg DG, Lincoln GA: Hypothesis: cyclical histogenesis is
the basis of circannual timing. J Biol Rhythms 2011, 26:471-485.

50. Naylor E: Chronobiology of Marine Organisms. Cambridge
University Press; 2010.

51. Shimmura T, Nakayama T, Shinomiya A, Fukamachi S, Yasugi M,
Watanabe E, Shimo T, Senga T, Nishimura T, Tanaka M et al.:
Dynamic plasticity in phototransduction regulates seasonal
changes in color perception. Nat Commun 2017, 8:1-7.

52. Welbourne LE, Morland AB, Wade AR: Human colour perception
changes between seasons. Curr Biol 2015, 25:R646-R647.

53.
��

Baumgartner MF, Tarrant AM: The physiology and ecology of
diapause in marine copepods. Ann Rev Mar Sci 2017, 9:387-411

An extensive review of seasonal diapause in copepods, the “insect of the
sea”, that discusses different forms of diapause as well as the role of
different external and internal factors like photoperiod, temperature, lipid
levels and endogenous clocks. The work further discusses potential
impacts of climate change on copepod diapause.
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