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A B S T R A C T   

Shrimp production is one of the fastest growing sectors in the aquaculture industry. Despite extensive research in 
recent years, stocking densities in shrimp systems still depend on manual sampling which is neither time nor cost 
efficient and additionally challenges shrimp welfare. This paper compares the performance of automatic shrimp 
counting solutions for commercial Recirculating Aquaculture System (RAS) based farming systems, using eight 
Deep Learning based methods. The entire dataset includes 1379 images of shrimps in RAS farming tanks, taken at 
a distance using an iPhone 11 mini. These were manually annotated, with bounding boxes for every clearly 
visible shrimp. The dataset was partitioned into training (60 %, 828 samples), validation (20 %, 276 samples) 
and test (20 %, 275 samples) splits for purposes of training and evaluating the models. The present work 
demonstrates that state-of-the-art object detection models outperform manual counting and achieve high per
formance across the entire production range and at various circumstances known to be challenging for object 
detection (dim light, overlapping and small animals, various acquisition devices and image resolutions and 
camera distance to object). Highest counting performance was obtained with models based on YOLOv5m6 and 
Faster R–CNN (as opposed to neural network autoencoder architecture to estimate a density map). The best 
model generalizes well on an independent test set and even shows promising performance when tested with 
different taxa. The model performs best at densities below 200 shrimps per image with an overall error of 5.97 %. 
It is assumed that this performance can be improved by increasing the dataset size, especially with images at high 
shrimp stocking density, and it is strongly believed that a performance below the 5 % error threshold is close to 
being achieved, which will allow for deployment of the model in an industrial setting.   

1. Introduction 

Despite a substantial increase in intensive Recirculating Aquaculture 
System (RAS) based farming in Europe, animal welfare and financial 
issues remain. Indeed, the monitoring of important production param
eters, such as biomass, health status, feeding rates and growth of the 
animals, is still largely manual. The farm manager invests about 2 h per 
week in manpower (coinciding with 300 €/month). Beyond being 
extremely time consuming and error prone, it causes stress and some
times physical damage to the animals. In a recent review entitled on 

Welfare of Decapod Crustaceans the authors summarize that behaviour 
of the animals suggests that decapod crustaceans experience nociception 
and there are also several indications of pain perception Wuertz et al. 
(2023) . 

Monitoring relies primarily on the number of individuals per tank 
and their respective lengths (which correlates to weights). However, 
efforts to automatically estimate these numbers in shrimp farming have 
failed in commercial settings. In the meantime, counting shrimps using 
image processing algorithms is not a recent concept. Khantuwan and 
Khiripet (2012) introduced an automatic method for counting shrimp 
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larvae using histogram and template matching. This method was able to 
achieve 97 % accuracy. A similar counting performance is reported in 
other shrimp larvae studies based upon image processing techniques 
(Awalludin et al., 2019; Boksuwan et al., 2018; Kaewchote et al., 2018). 
Unfortunately, these methods were based upon classical image pro
cessing, whose performance drastically decreases in overlapping sce
narios. For example, in Kaewchote et al. (2018), a large root mean 
square error of 14.43 shrimps per image (showing on average 164 
shrimp larvae, data recalculated from manual counting numbers pro
vided in Table 2 by authors) is reported, which is mainly due to the 
overlapping of shrimps, even after transferring the animals to counting 
buckets. Additionally, all the above approaches required manual 
thresholds to achieve satisfactory results. 

Deep Learning (DL) models can be more resilient in uncontrolled 
conditions, when provided with enough annotated images. Such models 
are therefore better suited for industrial scenarios, as seen for example in 
applied microbiology (Majchrowska et al., 2021, 2022; Pawłowski et al., 
2022). YOLOv3 based models used for counting shrimp larvae in a 
controlled lab environment obtained a test F1-score of 94.38 % on a test 
set of 30 images, but failed to detect shrimps in overlapping scenarios 
(Armalivia et al., 2021). A two-phase Mask R–CNN for instance seg
mentation of shrimp larvae achieved a counting accuracy of 72.9 % in 
high overlapping scenarios (Nguyen et al., 2020). Similarly, in another 
study, Faster R–CNN based on shrimp key body part detection, i.e., head 
and stomach, had a mean percentage error of 23.8 % in overlapping 
scenarios (Hashisho et al., 2021). The model was evaluated on a test set 
containing 30 images. 

However, all the above-mentioned methods, based on standard 
image processing techniques and DL applications alike, count shrimps in 
images taken in a controlled environment with ideal settings, such as 
light, contrast (e.g., white background), water level or numbers of 
shrimps, in order to optimize image quality and avoid overlapping 
scenarios. For this purpose, shrimp larvae needed to be removed from 
the cultivation system and placed in separate buckets. In Kaewchote 
et al. (2018), for example, images were taken in small beakers with low 
water level, a high background contrast against the shrimp and addi
tional lighting, at a camera distance of a few centimeters (Fig. 1a). The 
estimated number would then need to be extrapolated to the whole tank, 
thus introducing additional errors. Moreover, most methods focus on a 
specific shrimp age and size, thereby not covering the entire production 
range. Such limited conditions do not represent the industrial environ
ment and cannot be met in on-growing shrimp systems using clear water 
technology and different lighting conditions, where acquired images of 
the tank have lower quality and the contrast of shrimps against the 
background is reduced (Fig. 1b). An additional challenge on farms, 
where tanks have a high-water level, is that the distance of the shrimps 
to the camera changes and therefore shrimps swimming on the water 
surface appear bigger, while those sitting on the net appear smaller. In 
this scenario, thresholding techniques completely fail because swim
ming shrimps could be considered outliers compared to sitting shrimps 
and vice versa. Finally, all methods reported increasing error rates with 
increasing overlapping. In real farm systems, the number of shrimps on 
an image and their overlap cannot be controlled and algorithms need to 

be developed to overcome such complications. In such a setup, shrimp 
detection and counting remains a challenging task. 

To summarize, all the methods presented in the literature counted 
shrimp in the lab environment with ideal settings that are impossible to 
achieve in an industrial environment. The following conditions were 
identified to be most challenging for automatic object detection in a 
farm environment:  

1. Overlapping shrimps due to high stocking densities and high-water 
level  

2. Diffused background color and reduced contrast to shrimp object  
3. Non-homogeneous lighting conditions, and farm light reflection on 

the water surface 

In the present work eight DL based methods trained on images ac
quired in an industrial RAS farm were tailored and benchmarked, and 
performances of object detection vs Density Map (DM) based models at 
different environmental settings were compared (blue and white light, 
80 and 120 cm camera height). A solution is proposed that tackles 
shrimp counting in an industrial environment on shrimp sizes repre
senting the entire production range (from 3.4 g to 29 g). It is shown that 
all but one of the models clearly outperforms the current manual stan
dard for counting, estimated by aqua farming experts at an error of 
approximately 20 % (pers. comm. B. Wecker, Oceanloop Kiel GmbH & 
Co. KG). Furthermore, a 5 % error target was set for automatic counting 
approaches to be accepted and integrated in farm setups and it is shown 
that the best models achieve a performance very close to it. The 5 % 
error target is based on several observations, which are largely derived 
from practical farm experience. Firstly, the current methods used for 
determining biomass consist of weighing individual shrimps and 
manually counting images and are therefore only carried out about once 
a month due to the high effort involved. Moreover, the number of 
measured data collected in these cases does not adequately reflect the 
high variance observed in the farms. Finally, the accuracy of the 
manually determined number of shrimps can be verified by the final 
number of shrimps harvested. Some of the results show a deviation in 
the data of up to 20–25 %. A 5 % error target is therefore already a 
significant improvement to existing techniques and sufficient from an 
economic point of view. This is especially true for the setting of an 
optimized feeding rate, which accepts an under- or overestimation of the 
biomass of 5 %, since the underfeeding is usually in the range of 10–20 
% to optimize the feed conversion, and the error of 5 % plays only a 
minor role. It is assumed that this current 5 % error threshold can be 
overcome in future work by collecting a larger dataset to retrain the 
present model. In addition, it is demonstrated that the present model 
generalizes to an independently collected dataset, displaying reduced 
performance only for images out of the distribution of the original 
training set. 

2. Materials and methods 

In the sections below the process of data acquisition, annotation and 
preparation is described in order to collect an imaging dataset depicting 

Table 1 
Comparison of overall best performing models in terms of shrimp counting error. In bold the best results per metric for which the Wilcoxon signed-rank tests showed no 
significant statistical difference.  

No. approach model variant MAE (counts) MAPE (%) sMAPE (%) 

Model 1 detection-based Faster R–CNN globally tuned NMS and confidence thresholds 5.48 6.46 6.59 
Model 2 detection-based Faster R–CNN adjusted NMS and confidence thresholds per category 5.03 6.37 6.47 
Model 3 detection-based YOLOv5m6 globally tuned NMS and confidence thresholds 4.70 6.03 6.05 
Model 4 detection-based YOLOv5m6 adjusted NMS and confidence thresholds per category 4.66 5.97 6.01 
Model 5 DM-based U2-Net bare model 12.97 22.34 18.15 
Model 6 DM-based U2-Net with self-normalization 9.86 15.19 13.45 
Model 7 DM-based U2-Net with blobs counting 8.33 10.42 10.27 
Model 8 DM-based U2-Net with regression CNN network 6.65 9.77 9.35  
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shrimps in RAS farming tanks which can be used to train a deep learning 
model to automatically estimate the number of shrimps per tank. The 
models training process, hyperparameter tuning and model selection are 
outlined, followed by the testing and evaluation of the different 
approaches. 

2.1. Dataset 

The entire dataset includes 1379 images of shrimps in RAS farming 
tanks, taken at a distance using an iPhone 11 mini. These were manually 
annotated, with bounding boxes for every clearly visible shrimp using 
the open-source Label Studio tool (Tkachenko et al., 2020). The Label 
Studio was self-hosted on a local server. The annotation setup was 
configured as a rectangular annotation with a single class ‘shrimp’. The 
whole dataset was manually annotated by a single annotator, however, 
the samples with high annotation density (above 100 bounding boxes) 
were further validated and corrected by another two annotators. The 
data was acquired under four different light-distance categories: 80 cm 
and 120 cm distance to the tank, with either white or blue light (See 
Fig. S1). The average number of shrimps per image for the entire dataset 

is 73 (min: 14, max: 292), while the average shrimp count for category 
80 cm/blue is 42 (min: 14, max: 98), 56 (min: 23, max: 133) for 120 
cm/blue, 61 (min: 16, max: 150) for 80 cm/white and 120 (min: 35, 
max: 292) for 120 cm/white. A higher density is observed in the 120 
cm/white category, which can be partially explained by the 120 cm 
camera distance, meaning that the images cover a larger area of the tank 
(See Fig. S2 for the distribution of bounding boxes per light-distance 
category). The dataset was partitioned into training (60 %, 828 sam
ples), validation (20 %, 276 samples) and test (20 %, 275 samples) splits 
for purposes of training and evaluating the models. Stratified sampling 
was applied for the partitioning to preserve the original distribution of 
light-distance categories (Fig. 2a). Based on the bounding box annota
tions, density maps were prepared according to the following procedure: 
mask image was created with ones in the locations of bounding box 
centers and zeros elsewhere. In order to obtain the density map, the 
mask was convolved with a 2D Gaussian filter with a sigma parameter 
(σ) equal to eight. The sum of a single Gaussian distribution was equal to 
one, therefore the sum of pixels on the density map was equal to the 
number of shrimps. In this way, two types of ground truth annotations 
were generated for each image (Fig. 2b, c), which are independently 

Table 2 
Comparison of MAPE error for Model 1 (Faster R–CNN) and Model 3 (YOLOv5m6) on the independent test set. In bold the statistically significant better performing 
model for each category (P < 0.01).  

distance images # avg. shrimp number/image Faster R–CNN error [MAPE] YOLO error [MAPE] 

all categories 90 164 19.14 11.59 
100 cm 30 100 7.33 7.39 
125 cm 30 182 20.12 10.44 
185 cm 30 209 29.98 16.94  

Fig. 1. a) Images taken under experimental conditions with camera (type unspecified) placed above a small beaker, with white background (Source: Kaewchote et al. 
(2018)). b) Image taken at a commercial shrimp farm with a smartphone (iPhone 11 mini), at realistic light conditions, in the presence of horizontal ‘mangroves’ nets, 
and at commercial stocking density. The image was taken at 80 cm above water (Source: Oceanloop Kiel GmbH & Co. KG). 

Fig. 2. a) The number of images divided into four light-distance categories with stacked train, validation and test splits. Numbers seen on the individual bar plots 
indicate the number of images in each dataset partition. b) Visualization of exemplary annotations of images with bounding boxes and c) Density maps. 
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used to train our various models. For details on the acquisition, labeling 
and more statistics please refer to the Supplementary Information A. 

Independent test set: An additional dataset was used to test the 
generalizability of the models, containing 90 samples collected with an 
iPhone 11 mini and with three distance categories under both light 
conditions (100 cm, 125 cm and 185 cm, with 30 samples per category). 
The images were extracted from videos, with a sufficient window be
tween frames to ensure that the shrimps had changed location, signi
fying that these images have lower resolution compared to the main 
dataset. Additionally, this dataset differs significantly from the main 
dataset in terms of average number of shrimps per image (164 shrimps 
with min: 66 and max: 266 vs. 73 shrimps). To generate the ground truth 
for this dataset, the CVAT platform was used (Sekachev et al., 2020), 
which provides the option for single-click annotations. 

The images used in this study were collected at Oceanloop Kiel 
GmbH & Co. KG farm (Strande, Germany). Animals were photographed 
at a distance in a holding system registered for animal production 
(Registering body SH plus Zulassungsnummer) and no handling or stress 
was encountered or possible during the acquisition. The authors and the 
experimental image collection comply fully with ARRIVE guidelines. 

2.2. Models 

A two-pronged approach was used for determining the number of 
shrimps in an image and trained two types of bounding box detection 
algorithms, which was named detection-based approaches, as well as 
DM-based models. Counting via object detection was realized with two 
main architecture types, namely one-stage and two-stage models, as 
depicted in Fig. 3a and 3b. In contrast to one-stage models, which 
perform a straightway classification of objects and regression of 
bounding boxes within a single feed-forward pass of the network, two- 
stage models break down the generation into two phases: first the gen
eration of candidate regions is realized via a Region Proposal Network 
(RPN) and then classification and regression is performed for each 
proposed region. Faster R–CNN (Ren et al., 2016), deriving from the 
R–CNN (Girshick et al., 2014) family, was trained as a representative of 
the two-stage models group and YOLOv5m6 as a well-performing 
one-stage model was used (Jocher et al., 2021). YOLOv5m6 is a 
version of YOLO and was chosen here due to its augmentation tech
niques, namely mosaic and mix-up image transformations, which 

greatly contributes to model generalization (Zhang et al., 2018). For 
details on the architectures please refer to the Supplementary 
Information. 

Another approach for object counting is to use a neural network 
autoencoder architecture to estimate a DM that represents objects on a 
given image. The main idea is to transform an input image to the 
normalized map of the density of the objects, so that the number of 
objects can be established as the integral over the map. This approach is 
most commonly used for crowd counting (Lempitsky and Zisserman, 
2010; Zhang et al., 2015), but also for biological objects (Arteta et al., 
2014; Graczyk et al., 2022; Xie et al., 2018). Several approaches were 
applied for predicting the number of shrimps with DMs: bare 
Gaussian-kernel-based DMs (Jiang and Yu, 2020), self-normalizing DMs 
(SNDMs) (Graczyk et al., 2022), DMs with blob-based counting and DMs 
with an additional custom CNN-based regression network (Fig. 3d). All 
the aforementioned models used the U2-Net backbone (Qin et al., 2020), 
which is depicted in Fig. 3c. 

The models were initially trained on the training set and determined 
the hyperparameters of the models on the validation set. The tuned 
hyperparameters are different for detection and DM-based models. In 
the case of detection-based models the following hyperparameters were 
tuned: the threshold of Non-Maximum Suppression (NMS) and the 
bounding boxes acceptance threshold, later referred to as the confidence 
threshold. Tuning was performed of the thresholds both: globally (with 
no distinction of light-distance categories) and individually for each 
light-distance category, resulting in a total of four detection-based 
models. In the case of DM models, the tuned hyperparameters were 
the Gaussian-kernel’s standard deviation (σ) and the normalization 
factor in the case of SNDMs. Having established the hyperparameters 
values, the final models were retrained on the combined training and 
validation sets (80 % of the dataset). For training the detection and DM- 
based models, the same loss functions were used as in the original 
publications. In order to track the training progress on the prediction of 
bounding boxes (Faster R–CNN and YOLOv5m6), the mean Average 
Precision (mAP) was used at 0.5:0.95 IoU thresholds, mAP@.5:.95 
(Everingham et al., 2010) (see also Supplementary Information B). 
The final models were evaluated on the 20 % test set, unseen during 
training and validation. In the following sections the training configu
rations that were used for the various models are briefly summarized. 
For a more detailed description of the variants of the models and their 

Fig. 3. Schematic representation of the detection-based (A, B) and DM-based models (C, D). a) One-stage object detection models perform direct classification and 
regression of bounding-boxes b) Two-stage detection models use additional RPN for generation of candidate regions. c) Autoencoder neural network (U2-Net) 
predicts DMs which can be later integrated (Σ symbol) to count the number of objects. d) The custom approach uses an additional CNN-based regression network for 
integration of the maps. 
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hyperparameters please refer to the Supplementary Information and to 
the cited literature. 

Faster R–CNN: Both Faster R–CNN models (with global and per 
category NMS thresholds) were trained based on the Res-Next-101 
backbone (Xie et al., 2017) and pre-trained on MS-COCO (Lin et al., 
2014). At the preprocessing stage input images were resized to 
1333x800x3 and were padded to keep the original dimensions ratio. 
Additionally, RGB-color-space normalization was used and images were 
flipped with a 0.5 probability. The models were trained for 12 epochs 
with stochastic gradient descent (SGD), a batch size of two, 2.5e-3 
learning rate, 0.9 momentum and 0.0001 wt decay. A single NVIDIA 
GeForce RTX Titan GPU with 24 GB of VRAM was used for training. 

YOLOv5m6: The YOLOv5m6 model (with global and per category 
NMS thresholds), a variant of YOLOv5 pre-trained on the COCO dataset, 
was used in this study. The model was trained for 80 epochs with a batch 
size of eight. Input images were resized and padded to a size of 
2048x2048x3. The following data augmentations were applied: mixup 
and mosaic data enhancement, HSV color varying, image scaling and 
translation, left-right flip. SGD was used as an optimizer with 0.01 
learning rate, 0.937 momentum and 0.0005 wt decay. The models were 
trained on a single NVIDIA Tesla A40 GPU. 

DM-based models: As the baseline for the DM-based models an 
autoencoder network was trained. Among several types of neural net
works used for DM estimation, the U-Net architecture (Ronneberger 
et al., 2015) is most commonly applied (Jiang and Yu, 2020). However, 
it was observed that the U2-Net architecture performed better than the 
U-Net in this case. The U2-Net was trained for 100 epochs using the SGD 
optimizer with 2e-3 learning rate and a batch size of one. The models 
were trained on a single NVIDIA GeForce RTX Titan GPU with 24 GB of 
VRAM. 

Self-normalization variant: During the experiments it was often found 
that the network predicted the position of objects correctly, but after 
taking the integral of the DM, the predicted count was underestimated. 
To remedy this, the self-normalization mechanism to the U2-Net, with 
the same training hyperparameters as in the base autoencoder was 
applied (see Supplementary Information F for more details). 

Blob detection variant: Another solution in which, instead of simple 
integration of the output DM, blob detection was performed on the DM 
using the Difference-of-Gaussian-based algorithm was tested (Lowe, 
2004). The final prediction of the objects’ number can be obtained by 
counting the detected blobs. This approach was applied to the trained 
baseline autoencoder. 

Regression network variant: A custom regression network was devel
oped with the aim to perform better summation of the DM instead of 
using the simple pixel-wise sum (Fig. 3D). For this purpose, a shallow 
CNN network was applied, followed by fully connected layers that were 
trained to perform regression on DMs predicted by the U2-Net model. 
The regression part and autoencoder part were trained separately. The 
final regression network’s architecture had a simple yet effective design 
(see Supplementary Information F). The Mean Squared Error was used 
as the regression loss function, which proved to perform better than the 
Mean Absolute Error (MAE). The model was trained with the Adam 
optimizer, for 10 epochs, with 1e-3 learning rate and a batch size of one. 

2.3. Evaluation 

The final validation of the approaches, either detection or DM-based, 
was performed on the test set using evaluation metrics for the task of 
counting objects, i.e. shrimps. In addition to the standard counting 
metric, MAE, also relative errors were used to account for the distribu
tion of ground truth counts: the Mean Absolute Percentage Error (MAPE) 
and the symmetric Mean Absolute Percentage Error (sMAPE, see Sup
plementary Material B). 

To select the optimal model for shrimp detection a non-parametric 
statistical tests was used. Each model’s performance was compared 
with respect to the Absolute Error, the Absolute Percentage Error (APE) 

and the symmetric Absolute Error between the true and predicted 
number of shrimps in each image of the test set. First, a Fligner-Killeen 
test was performed to ensure that the distributions have similar vari
ances (Fligner and Killeen, 1976), and then applied a pairwise Wilcoxon 
signed-rank test for each model pair (Wilcoxon, 1945). The choice of test 
was based upon the observation that: i. Comparing paired samples of 
error rates deriving from the same test set and ii. The distributions were 
skewed, which violates the normality assumption of the one-way 
ANOVA. A threshold value of P = 0.01 was set to determine whether 
the p-value between the pair’s distribution is statistically significant. 

3. Results 

Table 1 shows results on the test set for the eight models which were 
benchmarked. The best performing model is Model 4, YOLOv5m6 with 
adjusted NMS and confidence thresholds per scenario, achieving the 
lowest MAPE of 5.97 %. Model 3, again a YOLOv5m6 but with global 
thresholds, performs slightly worse with an MAPE of 6.03 %. Similarly, 
for the Faster R–CNN models, Model 2 achieves a slightly lower error 
compared to Model 1 (MAPE of 6.37 % vs. 6.46 %). DM-based models 
obtained results on the level of 9.77 % MAPE. 

Statistical significance tests between model pairs showed no signif
icant difference between any of the detection-based models (P > 0.01). 
However, the pairwise Wilcoxon signed-rank tests showed that the dif
ference between each detection-based model and each DM-based model 
were statistically significant (detection models were always superior, P 
< 0.01). Additionally, from the DM-based approaches, Model 7 and 
Model 8 were significantly better than the two remaining DM-based 
models, while Model 6 performed significantly better than Model 5. 
Table S1 in the Supplementary Information gives detailed P values for 
each test performed on the APE distributions. 

3.1. Best performing models 

In this section the counting performance of the two best models 
based on YOLOv5m6 and Faster R–CNN is presented (Models 4 and 2 
respectively). It was observed that both architectures, YOLOv5m6 and 
Faster R–CNN, perform comparably well. All models had test-time NMS 
and confidence thresholds tuned on the validation dataset (see Supple
mentary Information C). Models with adjusted NMS and confidence 
thresholds per category proved to perform better than the globally 
adjusted hyperparameters. However, the difference between model 
performance with globally adjusted thresholds and with per light- 
distance category thresholds for the YOLOv5m6 models (Models 3 and 
4) was relatively small, around 0.06 % MAPE. 

The counting performance of Model 2 and Model 4 is visible in Fig. 4. 
As can be seen, both models perform well on the majority of images, 
predicting them within the ±10 % error margin. Both models output 
more predictions that are outside this margin for higher object density 
images (120 cm/white category) than for the rest of the data. 

The best performing models were also compared regarding inference 
time on the whole test dataset (275 images with dimensions 1536 ×
2048 and 73 objects on average). The test was run on both an NVIDIA 
A40 GPU and a AMD EPYC 7252 8-Core CPU Processor. For Faster 
R–CNN the following performance was achieved: 270 ms per image on a 
single GPU (2.5 GB VRAM allocated) and 4.2 s per image on the CPU. For 
YOLOv5m6 the performance was significantly better: 15 ms per image 
on a single GPU (2 GB VRAM allocated) and 130 ms per image on CPU. 
Further model optimizations are possible for these models’ architectures 
(e.g. conversion to TensorRT) that should allow for real-time inference 
with satisfactory FPS (frames per second). 

3.2. Models performance on the independent test set 

In order to assess the ability of the models to generalize to changing 
environmental conditions, Faster R–CNN (Model 1) and YOLOv5m6 
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(Model 3) were tested on an independent test set (see Section 2.1.). 
These models were chosen, as opposed to Models 2 and 4, because the 
external dataset was acquired at different heights than the main dataset. 

It is clearly visible (Fig. 5) that both models perform reasonably well 
on images of the independent test set with a shrimp count below 200 (62 
samples with an average of 131 shrimps per image, see Table S2), which 
is closer to the average shrimp count of the original test set. However, at 
greater camera heights, i.e., more shrimps per image, Faster R–CNN’s 
results are visibly worse due to the higher average shrimp density when 
compared to the training set. Overall, the YOLOv5m6 performs signifi
cantly better than Faster R–CNN across all distance categories as can be 
seen on Table 2. Especially noticeable is the difference at higher distance 
categories, where YOLOv5m6 outperforms Faster R–CNN by about 10 % 
on MAPE. An example of YOLOv5m6 predictions on an image of this 
dataset is visualized in Fig. 6. 

4. Discussion 

This study provides the first evidence of automatic shrimp counting 
with high performance under real farm conditions. All models showed 
low error rates and fast processing times of only a few seconds, critical 
for fast decision making and intervention, for example when a 
decreasing number of animals is detected. In addition, shrimps can 
hereby remain in their original environment, which was not the case in 
previous studies. Moreover, this application does not require any 
complicated setup, merely a smartphone with a camera and a user who 
follows the provided guidelines when taking images (height, angle, 
image in focus). 

In the field of shrimp biomass determination, there are currently only 
a few companies that can determine both the number of individuals and 
the average weight. XpertSea (2024), a Canadian company, focuses 
primarily on determining length, average weight and density. Shrimps 
are photographed in a predefined volume against a white background 
and their length is automatically determined. The weight can then be 
surmised from the length-weight ratio. The disadvantage of this method 
is that it cannot be used directly in the pond or tank, but the shrimp must 

be transferred to a measuring device. The measured sample will accu
rately reflect the real biomass if the sample is taken from a homogeneous 
population, such as in larval tanks. However, the technology cannot be 
used in larger tanks or for larger individuals. The start-up company 
Sincere Aquaculture (2024), based in Denmark, has developed a shrimp 
counting machine similar to those used for fish. The shrimp flow through 
a tube where they are detected and counted by a high-speed camera. As 
this method requires shrimp to be actively pumped out of the system 
through the counter, it is particularly suitable for measurements during 
stocking, transfer or harvesting. Currently, shrimp from approximately 
1.5 cm–10 cm in length can be detected. Sincere Aquaculture claims 
90% accuracy in counting. Ideally, one would aim to further increase 
accuracy and be able to count both smaller and larger shrimps. 

The results and statistical tests presented in Section 3 show that 
detection-based approaches perform significantly better than DM-based 
methods. One possible explanation for the lower performance with DM- 
based models is that the density estimation approach is sensitive to 

Fig. 4. The relation between ground truth and prediction count for each image in the test set for a) Model 2 (Faster R–CNN) and b) Model 4 (YOLOv5m6). The light 
blue lines mark the ±10 % error margin. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. The relation between ground truth and prediction count for each of the 90 images of the independent test set using a) Model 1 (Faster R–CNN) and b) Model 
3 (YOLOv5m6). 

Fig. 6. Visualization of Model 3 (YOLOv5m6) predictions on a representative 
image of the independent test set acquired at a 185 cm camera distance (pre
dicted value is 237, ground truth is 255 APE of 7.06 %). 
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isolated object clusters (Bai et al., 2019). Moreover, from the 
detection-based models, using a YOLOv5m6 architecture achieved a 
slightly lower MAPE compared to Faster R–CNN, however this 
improvement is not significant. All models except Model 5, a bare 
U2-Net, proved to be satisfactory for the task of counting shrimps, as 
their MAPE falls well below the estimated 20 % error achieved with 
manual counting. Additionally, the performance of the best model, 
Model 4, almost achieves the 5 % threshold set for deployment in an 
industrial farm which would enable automatic monitoring of shrimp 
parameters. It was observed that the accuracy of the predictions depends 
on the density of shrimps within particular tanks. The model is more 
accurate in the range of shrimps counts up to 120. YOLOv5m6 tends to 
slightly underestimate shrimp counts in images taken from a 120 cm 
distance, but copes well with the 80 cm distance category for both 
conditions: white and blue light. Individual NMS test-time thresholds 
per each category and individual confidence thresholds slightly improve 
the performance of both YOLOv5m6 and Faster R–CNN, however this 
improvement is not significant. 

4.1. Generalization of YOLO detection model to other environments 

This study is the first of its kind developing and accessing DL models 
in shrimp real aquaculture farm environments. The two detection-based 
architectures achieved comparable results on the original test set, 
however, their value to the industry needs to be assessed by additionally 
testing it on different data. For this reason, experiments using an inde
pendent test set were performed. Here, YOLOv5m6 with global thresh
olds (Model 3) proved to be more transferable to different environments 
compared to Faster R–CNN. Fig. 5 shows that YOLOv5m6 is clearly su
perior. It achieved satisfactory performance (MAPE<20 %), even for 
images with higher density and at a new camera height (185 cm, Fig. 6) 
and low resolution, which shows that the YOLOv5m6 model generalizes 
better for this use case. Most likely, YOLOv5m6 outperforms Faster 
R–CNN at this task due to the heavier augmentation techniques applied 
during training, and in particular the mix-up which artificially creates 
training samples with higher object density and is especially useful when 
multiple overlapping objects are present on an image (see Fig. S8). 
Therefore, the model learns during training to correctly detect objects 
with large overlap. This could also explain why the improvement when 
applying per category thresholds in Table 1 is smaller for YOLOv5m6 
compared to Faster R–CNN, indicating that it generalizes better and 
doesn’t require the NMS and confidence thresholds to be tuned to a 
specific dataset to achieve good results. However, to further prove the 
generalization power of YOLOv5m6, it should be additionally tested on 
a larger dataset containing samples from different farms and even with 
different taxa. 

In a first attempt, the model was tested on a different taxon, 

specifically rainbow trout in a RAS system at the Center for Aquaculture 
Research (ZAF), AWI. Impressively it yielded an APE of 11.76 %, despite 
never being trained with such animals (Fig. 7a). This performance, 
which is comparable to the average error on the independent test set, is 
promising and suggests that the proposed model has indeed good 
generalization potential which could further be explored and effectively 
used for counting fish in RAS or systems allowing clear vision. 

4.2. Future studies to improve shrimp counting 

The present study used 1379 images for training and validation, a 
relatively small dataset, with an average shrimp number of 73 per 
image. Increased error rates in images of high shrimp density (inde
pendent test set with more than 200 shrimps per image) were observed, 
as DL models normally do not perform well on out-of-distribution 
samples. Hence, it is likely that more training data in this regime 
would improve the model performance in tanks with a higher density. In 
general, concentrating on the sources of error and trying to eliminate 
them by gathering more problematic scenarios in the training data, 
would be a recommended approach for future improvement of the 
model. Additionally, preliminary data obtained with a new camera 
system (Keyence CV-X490F with a 64 MP color camera, CA-HF6400C, 
and an 18 mm objective, CA-LHT18) indicate that a higher image res
olution allows for shrimp detection even at extremely low contrast of the 
animals from the background (Fig. 7b), which deserves further 
investigation. 

Clear water shrimp farming systems play a minor role in shrimp 
farming. The majority of shrimps are farmed in turbid water that exceed 
1 m in depth. The present method for shrimp detection obviously does 
not perform as well in RAS with turbid water (e.g., Fig. 7c), and even 
worse visibility is expected in ponds which produce the bulk of shrimps 
worldwide. Companies are now deploying sonar technology to effec
tively visualize shrimps in turbid ponds. For example, Minnowtech 
(2024) uses sonar technology claiming a 95% accuracy in determining 
biomass. The device, called the BRS1, emits sonar that is reflected by the 
shrimp and provides biomass information. The exact number of in
dividuals and average weight are ignored and only the total biomass is 
considered. However, this alone can significantly improve feed man
agement, with the additional advantage that this method can be used to 
determine biomass in turbid water. Hence, it would be of great interest 
to extend the current models for sonar images acquired in shrimp ponds. 

Finally, as discussed in Section 1, the number of shrimps per tank as 
well as their respective lengths are important measures that need to be 
monitored in domestic shrimp farming, for example when feeding needs 
to be adjusted if the growth is lower than expected. So far, only the 
problem of counting the number of shrimps in a tank was tackled. 
However, this method could be easily extended and use the bounding 

Fig. 7. The performance of Model 3 on out-of-distribution data. Green boxes represent true positive predictions and red boxes represent false positive predictions. a) 
Image of trout acquired with a smartphone at ZAF, AWI (predicted value is 30, ground truth is 34, APE is 11.76 %). b) Image of shrimps acquired with a Keyence 
camera system at Oceanloop Kiel GmbH & Co. KG farm (predicted value is 34, ground truth is 42, APE is 19.05 %). c) Image of shrimps acquired with a smartphone 
camera at the CrustaNova shrimp farm, Germany) - manual counting in this image was not possible. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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boxes to approximate the biomass per tank. 

5. Conclusions 

The present work demonstrates that high performance can be ach
ieved with DL based counting of shrimps in commercial RAS based 
farming systems across the entire production range and at various cir
cumstances known to be challenging for object detection algorithms 
(dim light, overlapping and/or small objects, various acquisition de
vices, image resolutions and camera distance to object). From present 
results, a camera lens distance from the water surface between 50 and 
100 cm is considered optimal to ensure a sufficiently large image sec
tion, to be able to use fast camera lenses and to avoid the splash water 
area. Under normal lighting conditions in the range of 5–35 lux, this 
setup is sufficient to achieve adequate image quality with fast lenses. It is 
also possible to use a flash, which the shrimps cannot perceive due to the 
short duration (personal observations) and are therefore not stressed by 
it. The additional effort required to install an additional light source 
while avoiding disturbing reflections can be compensated for by 
improved image quality and the associated additional analyzable image 
information, such as health status. 

The proposed method clearly overcomes the 20 % error of manual 
counting and achieves a promising performance close to the 5 % error 
threshold set for deployment of the method in an industrial setting. The 
chosen model performs best at a count below 200 shrimps per image. It 
is believed that improvements could be obtained by collecting a larger 
dataset, especially including images of high shrimp density. Remark
ably, the model’s performance on images with different conditions than 
those used during model training, only slightly decreases and stays 
within the 20 % acceptable error range. It is additionally observed that 
the model performs satisfactorily on images that are completely out of 
distribution (e.g. imaging of different taxa). This strongly suggests that 
real time animal counting in commercial RAS based farming environ
ments can be achieved with the proposed models. Currently, RAS pro
duction accounts for 1 %–4 % of total aquaculture production 
worldwide (variation depending on author). However, according to a 
2015 report from the Lux Research Water Intelligence service, it is ex
pected that RAS production share will increase to 45 % by 2030. Even if 
this appears over optimistic, it is likely that RAS share will substantially 
increase in the next decade and hence computer vision-based counting 
models such as the present, suitable in clearwater RAS, will become 
increasingly relevant for the entire market. 
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