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Data Analytics Software Framework

• central message broker
• remote procedure calls
• messaging protocol language bindings for python and typescript
• example: Digitial Earth Flood Event Explorer (Eggert et al. 2022)

For the implementation of our workflow we employ the Data Analytics Software 
Framework (Eggert et al. 2022).

Data Publishing and Dissemination
An often overlooked aspect of modeling is the publication and dissemination of model 
results. According to the FAIR principles, research data should be findable, 
accessible, interoperable and reusable. The WDCC service provided by DKRZ is 
aligned with these principles. Our workflow includes the easy publication of data using 
the infrastructure provided by DKRZ.

Complex simulations, such as ice sheet modeling, do not just require computations 
on a HPC infrastructure to solve the ice sheet model itself. Rather, an ice sheet 
model relies on forcing data, which is often the output of other models, such as 
atmospheric data from climate models. This project aims to develop a workflow 
across different HPC infrastructures that allows for efficient data ingestion, a user-
friendly framework, and the possibility of data publication. While the current focus is 
on ice sheet modeling, the developed workflow will be designed to be applicable to 
other model setups.

Recurring Simulations
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As in many other simulations, ice sheet modeling sometimes requires the computation 
of similar model setups where only minor aspects are changed. This is the case, for 
example, when calculating model spinups. Here, recurring simulations are performed 
with different computational grids and different model settings. However, the model 
input is not changed. A good workflow should allow the user to easily perform recurring 
simulations.

Fig. 3: Illustration of the spinup process used by Rückamp et al. (2018) to generate an initial state for the simulation of the 
Greenland Ice Sheet. To generate a model of the ice sheet that is consistent with the current geometry and temperature 
field, several similar simulations have to be run. Here, four different sequences with different grids and different coupling 
between the evolution of the geometry and the evolution of the temperature field are used.

The Distributed Aspect of Ice Sheet Modeling
Ice sheet simulations rely on the output of other models. Just as the cryosphere is only one part of the climate system, an ice sheet model is only one part of a climate model. 
Output from atmospheric models is needed to evaluate the temperature and surface mass balance of an ice sheet. The moving front module of an ice sheet model requires remote 
sensing data. In this sense, ice sheet modeling already follows a distributed approach.
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Fig. 1: Schematic showing one time step of a typical ice sheet model. The thermal module, which solves the enthalpy field, relies on atmospheric forcing data. The same is true for the surface mass balance module, which describes mass accumulation and 
ablation processes at the ice sheet surface. The stress balance module, solves the stress and mass balance of continuum mechanics to evaluate the velocity field. The moving front module, which describes the advance and retreat of the ice sheet's lateral 
margins, can benefit from additional data derived from satellite remote sensing. The mass transport module describes the evolution of the ice sheet geometry. The grounding line module tracks the position of the grounding line. At the end of the time step, 
the model output is written.

Using Additional Data in Ice Sheet Modeling
Easy integration of external data is crucial for ice sheet modeling. For example, 
prescribing the calving front position of floating glacier tongues using satellite remote 
sensing data products allows the development of new calving laws and the adjustment 
of existing ones. This can be achieved using inverse modeling and data assimilation 
techniques. The workflow developed in this project will allow the user to easily integrate 
data from external sources into the ice sheet model.

Fig. 2: Prescribing the geometry of floating glacier tongues in Greenland with calving front positions derived from satellite 
remote sensing allows the calculation of the equivalent von Mises stress, color coded in the figure. Equivalent von Mises 
stress values are consistent with corresponding calving laws.
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Distributed Computing -  The Workflow
Example of the distributed computing approach. Model development takes place at 
the AWI. A runtime script is sent to the terrabyte platform of the LRZ, where 
simulations are performed. Simulation data will be requested from partners like DKRZ, 
TU Dresden and DLR. The simulation results are then published at DKRZ. 

Fig. 4: Illustration of the planned workflow for the ice sheet modeling application. The workflow will be designed to be easily 
transferable to other applications.


