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Fish embryo vulnerability to combined acidification and warming
coincides with a low capacity for homeostatic regulation
Flemming Dahlke1,2,*, Magnus Lucassen1, Ulf Bickmeyer1, Sylke Wohlrab1,3, Velmurugu Puvanendran4,
Atle Mortensen4, Melissa Chierici5, Hans-Otto Pörtner1,2 and Daniela Storch1

ABSTRACT
The vulnerability of fish embryos and larvae to environmental factors
is often attributed to a lack of adult-like organ systems (gills) and thus
insufficient homeostatic capacity. However, experimental data
supporting this hypothesis are scarce. Here, by using Atlantic cod
(Gadus morhua) as a model, the relationship between embryo
vulnerability (to projected ocean acidification and warming) and
homeostatic capacity was explored through parallel analyses of
stage-specific mortality and in vitro activity and expression of major
ion pumps (ATP-synthase, Na+/K+-ATPase, H+-ATPase) and co-
transporters (NBC1, NKCC1). Immunolocalization of these
transporters was used to study ionocyte morphology in newly
hatched larvae. Treatment-related embryo mortality until hatching
(+20% due to acidification and warming) occurred primarily during an
early period (gastrulation) characterized by extremely low ion
transport capacity. Thereafter, embryo mortality decreased in
parallel with an exponential increase in activity and expression of all
investigated ion transporters. Significant changes in transporter
activity and expression in response to acidification (+15% activity)
and warming (−30% expression) indicate some potential for
short-term acclimatization, although this is probably associated with
energetic trade-offs. Interestingly, whole-larvae enzyme activity
(supported by abundant epidermal ionocytes) reached levels
similar to those previously measured in gill tissue of adult cod,
suggesting that early-life stages without functional gills are
better equipped in terms of ion homeostasis than previously
thought. This study implies that the gastrulation period represents a
critical transition from inherited (maternal) defenses to active
homeostatic regulation, which facilitates enhanced resilience of
later stages to environmental factors.
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INTRODUCTION
Embryonic development is a critical period in the lifecycle of most
organisms (Hamdoun and Epel, 2007). This could be particularly

true for ectothermic species that release their eggs into the ocean
(Przeslawski et al., 2015), which is expected to warm and acidify at
an unprecedented rate over the coming decades (IPCC, 2019). The
vulnerability of embryos and early larvae to climatic changes (and
environmental factors in general) is often attributed to a lack of
adult-like organ systems involved in energy and ion homeostasis
(Melzner et al., 2009b; Hamdoun and Epel, 2007). However,
knowledge about the development of homeostatic capacity and its
contribution to environmental tolerance is still incomplete
(Burggren and Bautista, 2019), making it difficult to identify
lifecycle bottlenecks and climatic risks (Burggren and Mueller,
2015; Esbaugh, 2018).

The eggs of aquatic ectotherms such as fish are permeable to
dissolved gases (e.g. O2 and CO2) and thermally equilibrated with
their environment (Finn and Kapoor, 2008). Embryos are therefore
directly exposed to changes in water temperature and CO2-driven
acidification without having regulatory (defensive) organ systems
like gills (Finn and Kapoor, 2008). Instead, early (cleavage) stages
are thought to be protected by maternally provisioned (passive)
defenses such as non-bicarbonate pH buffering and constitutive
heat-shock proteins (Melzner et al., 2009b; Hamdoun and Epel,
2007). These mechanisms may support embryonic resilience to
natural environmental variability (Hamdoun and Epel, 2007), but
the level of innate robustness is probably species specific and, in
some cases, insufficient to cope with the challenges posed by
anthropogenic climate change (Przeslawski et al., 2015; Dahlke
et al., 2017). After the cleavage stage, developmental control and
defense are transferred from maternal factors to those synthesized
from the embryonic genome (Tadros and Lipshitz, 2009), and it is
expected that the progressive differentiation of specialized cells
(ionocytes) and tissues promotes active homeostatic regulation and
thus improved environmental tolerance (Alderdice, 1988;
Rombough, 1997; Melzner et al., 2009b).

As inferred from studies on adult fish, maintenance of
homeostasis in a thermally dynamic environment includes
adjustments to the structure and functioning of cell membranes
and enzymes involved in energy (ATP) production (Somero et al.,
2017). Within temperature limits that are typically narrow in
embryos and larvae (Rombough, 1997), such responses (i.e. thermal
acclimatization) may support normal development and optimal use
of energetic resources (Schnurr et al., 2014; Scott et al., 2012).
Developmental defects can result from a mismatch between ATP
demand and supply capacity at critically high or low temperatures
(Sokolova et al., 2012; Dahlke et al., 2017; Leo et al., 2018), as well
as from thermal damage to proteins at extreme temperatures
(Somero, 2010). CO2-driven acidification hampers the diffusive
release of metabolic CO2 across epithelial surfaces, which causes an
increase in internal PCO2

and, consequently, a potentially harmful
decline in pH of extracellular/intracellular body fluids (Brauner
et al., 2019). Restoring acid–base balance requires ATP-intensiveReceived 19 August 2019; Accepted 22 April 2020

1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am
Handelshafen 12, 27570 Bremerhaven, Germany. 2University of Bremen, NW 2
Leobener Str., 28359 Bremen, Germany. 3Helmholtz Institute for Functional Marine
Biodiversity, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany. 4Nofima
AS, Muninbakken 9, 9019 Tromsø, Norway. 5Institute of Marine Research, Fram
Centre, 9019 Tromsø, Norway.

*Author for correspondence (flemming.dahlke@awi.de)

F.D., 0000-0003-0095-2362; M.L., 0000-0003-4276-4781; U.B., 0000-0002-
5351-2902; S.W., 0000-0003-3190-0880; V.P., 0000-0002-4416-7000; A.M., 0000-
0001-8735-7819; M.C., 0000-0003-0222-2101; H.-O.P., 0000-0001-6535-6575;
D.S., 0000-0003-3090-7554

1

© 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb212589. doi:10.1242/jeb.212589

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:flemming.dahlke@awi.de
http://orcid.org/0000-0003-0095-2362
http://orcid.org/0000-0003-4276-4781
http://orcid.org/0000-0002-5351-2902
http://orcid.org/0000-0002-5351-2902
http://orcid.org/0000-0003-3190-0880
http://orcid.org/0000-0002-4416-7000
http://orcid.org/0000-0001-8735-7819
http://orcid.org/0000-0001-8735-7819
http://orcid.org/0000-0003-0222-2101
http://orcid.org/0000-0001-6535-6575
http://orcid.org/0000-0003-3090-7554


ion transport mechanisms (Pörtner, 2008), including proton (H+)
excretion and bicarbonate (HCO3

−) accumulation (Brauner et al.,
2019). The additional ATP demand for CO2 compensation is
expected to reduce embryonic/larval growth efficiency and thermal
tolerance by tightening energy supply constraints at critical
temperatures (Pörtner, 2008; Dahlke et al., 2017; Dahlke et al.,
2018). Increased climate vulnerability of embryos and larvae
compared with adults probably represents a common feature among
vertebrate and invertebrate taxa living in different climate zones and
habitats (Rombough, 1997; Przeslawski et al., 2015). Knowledge
regarding the ontogeny of regulatory functions in relation to
environmental tolerance, acclimation potential and energy
budgeting may help advancing the concept of early-life
vulnerability and its potential for directing future eco-physiological
research.
Here, we used a marine cold-water fish (Atlantic cod, Gadus

morhua) to investigate (i) whether vulnerability to end-of-century
acidification (increase in PCO2

from 400 to 1100 µatm,−0.4 pH) and
warming (+3.5°C; Fig. 1A,B) during early embryogenesis coincides
with low homeostatic capacity, and (ii) whether this environmental
challenge modifies the development of energy-intensive
homeostatic functions, which can inform about acclimatization
potential (Burggren, 2018). Embryo vulnerability was quantified

based on daily mortality rates until hatching. Homeostatic capacity
was assessed at five stages until yolk sac absorption (Fig. 1C)
through measurements of ion transport and ATP synthesis capacity
[in vitro enzyme activity and/or protein expression of mitochondrial
F1FO-ATP-synthase (hereafter ATP-synthase), Na+/K+-ATPase
(NKA), V-Type H+-ATPase (VHA), Na+/HCO3

− cotransporter 1
(NBC1) and Na+/K+/2Cl− cotransporter 1 (NKCC1)] in
combination with immunohistological analyses of ionocyte
morphology. Cod represents a suitable model because rearing
methodology (Puvanendran et al., 2015; Dahlke et al., 2017) and
protocols for biochemical analyses and immunolocalization of
relevant ion transporters are well established (e.g. Kreiss et al.,
2015; Michael et al., 2016b). Furthermore, our previous
experiments confirmed the vulnerability of cod embryos to
acidification and warming (Dahlke et al., 2017), and data
available on ion-regulatory mechanisms in gill tissue of adult cod
(e.g. Kreiss et al., 2015; Michael et al., 2016b) allow for quantitative
and qualitative comparisons between embryos, larvae and adults.

MATERIALS AND METHODS
This experiment was conducted in Norway in 2014 according to
local regulations of the Norwegian Animal Research Authority
(Forsøksdyrutvalget, permit: FOTS ID 6382).
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Fig. 1. Experimental design. (A) Adult Atlantic cod, Gadus morhua, used in this experiment were caught in the Barents Sea off the coast of northern Norway
(black arrows). The maps show historic sea surface temperature (SST) during the spawning season (March–April) as well as projected ocean acidification (OA)
and warming by the end of this century under the IPCC high-emission scenario RCP8.5 (Van Vuuren et al., 2011). Climate datawere retrieved from NOAA’s climate
change web portal (Scott et al., 2016). (B) Six egg batches (produced by n=6 different females) were separately incubated from fertilization to yolk sac absorption
under four treatment conditions (see also Fig. S1), representing present spawning conditions (6.0°C, 400 µatm, pH 8.1, green) as well as future OA (6.0°C,
1100 µatm, pH 7.7, blue), warming (9.5°C, 400 µatm, pH 8.1, yellow) and the combination of the two factors (9.5°C, 1100 µatm, pH 7.7, red). (C) Images show
developmental stages investigated during this study. The incubation experiment was terminated at the stage of yolk sac absorption (stage V, 24 days at 6.0°C,
15 days at 9.5°C). Daily embryo mortality was assessed between 12 h post-fertilization and the onset of hatching (stage IV). Enzyme activity and protein expression
of major ion transporters were determined at stages I−V. Ion transporters were immunolocalized in larvae (stage IV) reared under control conditions.
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Experimental animals
Mature Atlantic cod,Gadus morhua Linnaeus 1758, were caught by
longlining in the southern Barents Sea (Tromsøflaket,
approximately 70.5°N, 18°E) in March 2014. After being
transported to the Centre for Marine Aquaculture of Nofima
outside Tromsø (Norway), the fish were held in a flow-through tank
(25 m3, supplied with fjord water) under ambient photoperiod,
salinity (34 ppt), pH (8.1) and temperature (5–6°C) conditions.

Fertilization
Gametes used for in vitro fertilization were obtained by means of
strip spawning from randomly selected females (n=6, 66–94 cm
length) and males (n=12, 59–91 cm length; Table S1). All
fertilizations were conducted within 30 min of stripping according
to a standard protocol (Brown et al., 2003). In brief, each of six egg
batches was divided into two equal portions to be fertilized under
two different PCO2

conditions (400 and 1100 µatm, pHFreeScale 8.1
and 7.7) using filtered (0.2 µm) seawater adjusted to 6°C. To
maximize genetic diversity, the eggs of each female were fertilized
with a sperm mix from two different males. Fertilization success
(Table S1) was determined in subsamples of 100 eggs (n=3
subsamples per batch and PCO2

treatment), which had been
incubated in sealed Petri dishes (20 ml water volume) for 12 h at
6°C before being photographed with a digital camera mounted to a
binocular. Eggs (8 or 16 cell stage) with a clear and regular cleavage
pattern were considered fertilized.

Incubation
A full-factorial design with two levels of PCO2

/pH (400 µatm,
pH 8.1 and 1100 µatm, pH 7.7) and two temperatures (6 and 9.5°C)
was used for incubation of eggs and larvae (Fig. S1). Eggs
previously fertilized at different PCO2

conditions were subdivided
into different temperature groups with the same PCO2

, resulting in
four experimental treatments: (i) 6°C, 400 µatm; (ii) 6°C,
1100 µatm; (iii) 9.5°C, 400 µatm; and (iv) 9.5°C, 1100 µatm.
Eggs for treatments iii and iv were warmed from 6°C to 9.5°C at a
rate of ∼0.5°C h−1. Increased temperature and PCO2

conditions
reflect end-of-century climate projections according to the IPCC
high-emission scenario RCP8.5 (Van Vuuren et al., 2011).
Treatment combinations were established in a flow-through
incubation system, which consisted of 24 upwelling incubators
(6 egg batches×2 PCO2

×2 temperatures=24) with a volume of 25 l
each. The flow rate was set to 1.5 l min−1 to ensure even distribution
and mixing of eggs within the incubator. Two flow-through header
tanks (150 l volume, one for each temperature) were connected to
the water supply pipes and equipped with a multi-channel feedback
system (IKS-Aquastar, IKS, Karlsbad, Germany) to adjust (and
control) elevated pH/PCO2

values online via infusion of pure CO2.
Automatic recordings (every 30 min) of temperature and pH values
within the incubation systems were referenced against daily

measurements of seawater pH/temperature with a laboratory-grade
pH-electrode (InLab Routine Pt 1000, Mettler Toledo, Columbus,
OH, USA) connected to a WTW 3310 pH-meter (Weilheim,
Germany). Prior to each measurement, the electrode was
recalibrated against tempered Tris–HCl seawater buffers (Dickson
et al., 2007) to convert pHNBS readings to the free proton
concentration scale of seawater pH (pHF) (Waters and Millero,
2013). The CO2SYS program (Lewis et al., 1998) was used to
calculate PCO2

values based on total alkalinity and dissolved
inorganic carbon determined in water samples (n=3) from each
treatment combination (taken during the running experiment).
Seawater parameters are summarized in Table 1.

Embryo mortality
Egg batches (n=6, 200–520 ml; Table S1) were equally distributed
across treatments (50–130 ml per incubator). Egg mortality was
determined volumetrically every 24 h until the onset of hatching by
draining dead (sunken) eggs into a graduated cylinder (±0.5 ml).
Fertilization success data (Table S1) were used to estimate the
volume of fertilized and unfertilized eggs within each incubator.
Daily mortality rates were calculated as percentages relative to the
estimated volume of eggs that was present in the incubator on the
previous day. To better resolve changes in embryo vulnerability in
relation to developmental age, egg mortality was also displayed as a
function of degree-days (days post-fertilization multiplied by
incubation temperature) (Trudgill et al., 2005). Total embryo
mortality was calculated as the percentage of fertilized eggs that
died until hatching stage.

Sampling
Subsamples of eggs and larvae used for analyses of enzyme activity
and protein expression were obtained from each treatment at
developmental stages I–V (Fig. 1C). These stages were chosen
because they represent developmental landmarks that can be
reliably identified under a stereomicroscope: stage I: end of
cleavage period, stage II: end of gastrulation period, stage III:
50% eye pigmentation, stage IV: peak-hatching, stage V: complete
yolk sac absorption (Hall et al., 2004). Developmental progress was
monitored in each incubator every 12 h. Prior to sampling, the
aeration and water supply of the incubators was turned off so that
eggs and larvae accumulated at the water surface. Eggs and larvae
were then concentrated within a small kitchen sieve, pipetted into
1.5 ml cryovials (∼500 individuals per vial) and immediately frozen
in liquid nitrogen after excess water was removed by pipetting.
Larvaewere previously centrifuged to the bottom of the vial (∼3 s at
500 rpm). Additional samples of larvae (stage IV) reared under
control conditions (6°C, 400 µatm) were fixed in 4% buffered
formaldehyde (pH 7.4) and stored in 70% phosphate-buffered
saline (PBS)-buffered isopropanol (pH 7.4) for immunolocalization
of NKA, VHA, ATP-synthase, NBC1 and NKCC1.

Table 1. Seawater temperature and pH of the different treatments

Temperature (°C) pH

Automatic Manual Automatic (NBS) Manual (free scale)

Nominal treatment Mean Range Mean Range Mean Range Mean Range PCO2 (µatm)

6.0°C, 400 µatm 6.15 5.8–6.4 6.09 5.95–6.2 8.12 7.93–8.25 8.10 8.08–8.13 380±7
6.0°C, 1100 µatm 7.74 7.50–7.89 7.72 7.70–7.74 1132±49
9.5°C, 400 µatm 9.63 9.4–9.8 9.54 9.38–9.70 8.13 7.91–8.25 8.12 8.08–8.16 468±18
9.5°C, 1100 µatm 7.73 7.55–7.91 7.73 7.63–7.78 1149±4

Data were recorded automatically every 30 min and checked manually once a day. Mean±s.d. PCO2 values were determined in n=3 subsamples.
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Sample preparation
Crude extract preparation followed the same protocol as described
elsewhere (Kreiss et al., 2015; Melzner et al., 2009a; Michael et al.,
2016a,b), with the exception that different sample-to-extraction
buffer dilutions were applied for egg (stage I–III) and larval (stage
IV and V) stages to ensure similar concentrations of biologically
active tissue in all extracts. This adjustment was necessary because a
given fresh mass of egg-shelled embryos contains approximately
half the number of individuals (tissue) than the same mass of frozen
larvae (many individuals compressed into one). Given that soluble
protein content of egg and early larval stages was reported to vary by
less than 3% (Finn et al., 1995), we normalized all measurements
against protein content of the crude extract to account for potential
differences in the number of individuals per sample. In brief, crude
extracts were produced by homogenizing ∼100 mg of frozen
sample suspended in 5 (eggs) or 10 (larvae) volumes of ice-cold
extraction buffer, which contained 50 mmol l−1 imidazole (pH 7.8),
250 mmol l−1 sucrose, 5 mmol l−1 Na2-EDTA, 0.1% sodium
deoxycholate, 5 mmol l−1 β-mercaptoethanol and 0.2 ml
proteinase inhibitor cocktail (Sigma-Aldrich, Taufkirchen,
Germany; catalog no. P8340). Samples were homogenized in a
temperature-controlled tissue homogenizer (Precellys 24, Bertin
Technologies, Aix-en-Provence, France) set to 0°C, 6000 rpm
(3×15 s). Cell fragments were removed by centrifugation (1000 g
for 10 min at 2°C) and the supernatant (crude extract) was taken for
analysis. Final protein concentration of the crude extracts were
determined according to Bradford (1976), using bovine serum
albumin (BSA) as standard. Differences in protein concentration
between treatments were not significant (Fig. S2A, Table S3). Half
of each sample was used for the enzyme assay and the other half for
immunoblotting procedures.

Enzyme assay
Maximum total ATPase activity and fractional (inhibitor-
sensitive) activity of NKA, VHA and ATP-synthase (reversed
catalysis) were measured in crude extracts by means of a coupled
enzyme assay based on pyruvate kinase (PK) and lactate
dehydrogenase (LDH) as described elsewhere (Kreiss et al.,
2015; Melzner et al., 2009a; Michael et al., 2016a,b). Transporter
specific enzyme activity was determined as the difference between
total ATPase (TA) activity and inhibitor-insensitive (residual)
ATPase activity, using inhibitor concentrations previously applied
to gill tissue samples of adult cod: 5 mmol l−1 ouabain for NKA
(Michael et al., 2016a), 60 μmol l−1 oligomycin for ATP-synthase
(Michael et al., 2016b) and 0.1 μmol l−1 bafilomycin A1 for VHA
(Kreiss et al., 2015). The assay was conducted in a micro-plate
reader format under temperature-controlled conditions. Samples
from 6.0 or 9.5°C incubations were assayed at both temperatures to
assess acclimation effects on enzyme activity. The reaction
process (oxidation of NADH, hydrolysis of ATP) was initiated
by the addition of crude extract to 20 volumes of reaction buffer
containing 100 mmol l−1 imidazole, pH 7.8, 80 mmol l−1 NaCl,
20 mmol l−1 KCl, 5 mmol l−1 MgCl2, 5 mmol l−1 ATP,
0.24 mmol l−1 Na-NADH2, 2 mmol l−1 phosphoenolpyruvate
and 12 U ml−1 PK with 17 U ml−1 LDH in a PK/LDH enzyme
mix (Sigma-Aldrich). All samples were arranged in a randomized
order and measured in quadruplicate with 10 readings over a time
period of 10 min at λ=339 nm. Inhibitor-insensitive activity was
calculated based on the extinction coefficient of NADH
(ε=6.31 l mmol−1 cm−1) and expressed as micromoles of ATP
consumed per mg protein in the crude extract per hour (µmol ATP
mg−1 protein h−1).

Antibody specificity
The specificity of all primary antibodies used for protein
quantification and/or localization was confirmed by western
blotting (Fig. S3). Antibodies against NKA, NKCC1 and NBC1
were previously used to study ion regulation processes in gill tissue
of cod (Kreiss et al., 2015; Melzner et al., 2009a; Michael et al.,
2016b). The polyclonal antibody against NBC1 was developed
specifically for cod (Michael et al., 2016b). Details on primary
antibodies are given in Table S2. A mix of subsamples from
randomly selected crude extracts (developmental stage IV) was split
into membrane and cytosolic fractions by ultra-centrifugation
(350,000 g for 30 min at 4°C). A 15 μl sample from each fraction
was separated by SDS-PAGE on 8–10% polyacrylamide gels
according to Laemmli (1970), and transferred onto PVDF
membranes (Immuno-BlotTM, Bio-Rad, Munich, Germany)
using a tank blotting system (Bio-Rad). To prevent non-specific
protein binding, blots were quenched for 1 h at room temperature
(RT) in TBS-Tween buffer [TBS-T, 50 mmol l−1 Tris-HCl, pH 7.4,
0.9% (w/v) NaCl, 0.1% (v/v) Tween20] containing 5% (w/v) non-
fat skimmed milk powder. Incubation of blots with primary
antibodies was done overnight at 2°C (dilutions in TBS-T are
given in Table S2). After washing with TBS-T, blots were incubated
for 1 h (RT) with horseradish-conjugated goat anti-rabbit/anti-
mouse IgG antibody (Pierce, Rockford, IL, USA, diluted 1:50,000
in TBS-T). Protein bands were visualized with ECL Advanced
Western Blotting Detection Reagent (GE Healthcare, Munich,
Germany), and imaged with a cooled charge-coupled device camera
(LAS-1000: Fuji, Tokyo, Japan). Protein bands (Fig. S3) were
referenced to pre-labelled SDS-PAGE standards (Bio-Rad).

Protein quantification
A 48-fold slot-blot filtration system (Hoefer PR 648, Amersham
Biosciences, Freiburg, Germany) was used to quantify the
expression of NKA, ATP-synthase, NBC1 and NKCC1. VHA
was excluded because of insufficient antibody reactivity. After
activation in 100% methanol, PVDF membranes were equilibrated
for 30 min in transfer buffer [10 mmol l−1 NaHCO3, 3 mmol l−1

NA2CO3, 20% (v/v) methanol, 0.025% (w/v) SDS, pH 9.5–9.9].
Crude extracts were diluted 1:10 in electrophoresis running buffer
[25 mmol l−1 Tris, 192 mmol l−1 glycine, 0.1% (w/v) SDS], and
80 µl of each sample were applied to the system followed by
repeated rinsing with transfer buffer (3×500 µl). A dilution series of
pooled samples was used as a reference standard on each membrane
(Fig. S3F), which were always loaded with randomly ordered
samples from two egg batches (2×20 samples) yielding 12 runs in
total (3×2 batches×4 proteins). After the loading process,
membranes were immediately blocked for 1 h (RT) with TBS-T
buffer containing 5% (w/v) non-fat skimmedmilk powder. Methods
for protein detection and imaging were the same as described above
(see Antibody specificity). Signal intensity was analyzed using
AIDA Image Analyzer software (version 3.52, Raytest,
Straubenhardt, Germany). Values were recalculated from the
reference curve and expressed as arbitrary units per mg protein
content of the original sample (a.u. mg−1 protein).

Immunolocalization of ion transport proteins
Fixed larvae (stage IV) were rehydrated in 0.1 mol l−1 PBS (pH 7.4)
and incubated for 30 min in 3% BSA to block non-specific binding
during immunolocalization of NKA, ATP-synthase, VHA, NBC-1
and NKCC. Incubation with primary antibodies diluted 1:300 in PBS
was done overnight at 2°C (see Table S2 for details on primary
antibodies). After being carefully rinsed with PBS, larvae were
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incubated for 2 h (RT) with two secondary antibodies (DyLight© 488
anti-mouse andDyLight© 594 anti-rabbit, Jackson ImmunoResearch,
West Grove, PA, USA, diluted 1:300 in PBS) for co-localization of
NBC1/NAK,NBC1/NKCC1, NBC1/ATP-synthase andNKA/VHA,
respectively. Negative controls were performed for each pair without
application of the primary antibody (Fig. S3G). Finally, larvae were
rinsed oncemorewith PBS and placed on a fluorescence slide prior to
image acquisition with an inverse confocal laser-scanning
microscope (Leica TCS SP5 II, Leica, Wetzlar, Germany). The
total number of mitochondria (ATP-synthase)-rich ionocytes on the
body surface of five larvae was evaluated using a cell-counter plugin
for ImageJ© (ATCN 1.6). Ionocyte density was estimated from the
number of cells divided by body area (cells mm−2).

Statistical analyses
Statistical analyses were conducted with the open source software R
(www.r-project.org). If normality and homoscedasticity were not
violated (assessed via Q–Q plots), linear mixed models (LME,
package ‘lme4’; Bates et al., 2014) were applied (total mortality,
enzyme activity-to-expression ratios). Otherwise, generalized linear
mixed-effect models (GLMM, package ‘lme4’) were used (daily
mortality, enzyme activity, protein expression) and appropriate
probability distributions were assessed using the ‘MASS’ package
(https://CRAN.R-project.org/package=MASS; Venables & Ripley,
2002). In all cases, different levels of temperature, PCO2

and
developmental stage were treated as fixed factors while egg batch
was included as a random factor. The package ‘lsmeans’ (Lenth,
2016) with Tukey’s P-value corrections was used to conduct post hoc
pairwise comparisons of single model factors. All data are presented
as means (±s.e.m.) and statistical tests with P<0.05 were considered
significant. Statistical results are summarized in Table S3.

RESULTS
Fertilization and development times
The difference in mean (±s.e.m.) fertilization success under control
conditions (88.4±4.3% at 6.0°C, 400 µatm CO2) and elevated
PCO2

(87.0±4.5% at 6.0°C, 1100 µatm CO2) was not significant
(paired t-test, P=0.08, n=6). Temperature-dependent development
times until stages I–V (Fig. 2A,B) were highly synchronous among
egg batches (Fig. S2); differences between PCO2

treatments were not
detectable by visual inspection (data not shown).

Mortality
The influence of elevatedPCO2

on dailymortality rates of cod embryos
was a function of incubation temperature and developmental stage
(Fig. 2A,B), as indicated by an interaction between age, PCO2

and
temperature (GLMM: P=0.0233). Increased mortality due to elevated
PCO2

occurred primarily during early development (cleavage and
gastrulation, stages I−II) and in combination with warming. Few
losses were observed during organogenesis, segmentation and
hatching (stages II−IV). Total mortality until hatching (Fig. 2C) of
embryos exposed to elevated PCO2

and warming (28.2±0.5%) was 2-
fold higher than in the control group (13.1±1.4%, post hoc test:
P<0.0001). Differences in mortality under either elevated PCO2

(14.1
±1.3%) or warming (16.1±1.2%) were not significant. These results
clearly demonstrate that early embryogenesis (and particularly
gastrulation) is a critical bottleneck with respect to the combined
effects of elevated PCO2

and temperature on Atlantic cod (Fig. 2D).

Enzyme activity
TA activity and specific activity of VHA, NKA and ATP-synthase
increased with developmental stage in a similar, sigmoidal way in

all treatment combinations (GLMM, P<0.0001; Fig. 3A,B). The
activity of NKA, VHA and ATP-synthase was extremely low at
stage I and II (end of gastrulation). Thereafter, activity increased
exponentially until hatching (stage II–IV) while a less rapid increase
was observed between hatching and yolk sac absorption (stage
IV−V; Fig. 3B). Between the end of gastrulation and yolk sac
absorption (stage II–V), enzyme specific activity increased 40- to
60-fold.

Incubation at elevated PCO2
had no effect on TA activity (GLMM,

P=0.145), but caused a significant increase (20–30% at stage III–V)
in the activity of NKA (P=0.021), VHA (P<0.001) and ATP-
synthase (P<0.001; Fig. 3B). Accordingly, there was a significant
decrease in residual ATPase activity (the difference between TA
activity and the sum of NKA, VHA and ATP-synthase activity) at
elevated compared with control PCO2

(GLMM, P<0.001;
Fig. 3D−G). The effect of elevated PCO2

on enzyme activity (TA,
NKA, VHA and ATP-synthase) did not differ between temperature
treatments (Fig. 3A,B). In both CO2 treatments, the summed
contribution of NKA, VHA and ATP-synthase activity to TA
activity decreased with warming, resulting in larger fractions of
residual ATPase activity at 9.5°C compared with 6.5°C (GLMM,
P=0.023; Fig. 3D−G).

Protein expression
The protein expression of NKA, ATP-synthase and secondary ion
transporters NKCC-1 and NBC1 (Fig. 4A−D) increased from low
levels during cleavage and gastrulation (stage I and II) to a
maximum at hatching (stage IV), followed by a 30–40% decrease
during yolk sac absorption (GLMM, stage effect: P<0.001). A trend
towards increased protein expression at elevated PCO2

was
statistically not significant (Table S3). Incubation at increased
temperature (9.5°C) led to an overall reduction in protein expression
of ∼40% (stage III–V) compared with that at 6.0°C (GLMM,
P<0.05).

Lower protein expression of NKA and ATP-synthase at 9.5°C
compared with 6.0°C did not result in a difference in enzyme
activity when assayed at a common temperature (Fig. 5A,B;
Table S3). Moreover, enzyme activity of NKA and ATP-synthase
increased throughout yolk sac absorption (stage V) despite a
reduction in expression between stage IV and stage V (Fig. 5A,B).
As a result, enzyme activity-to-expression ratios (indicating enzyme
catalytic power) increased significantly due to warming and
developmental progress (GLMM, P<0.0001; Fig. 5C,D).

Ion transporter localization
All targeted ion transporters (NKA, VHA, NBC1 and NKCC1) and
mitochondrial ATP-synthase were localized in epidermal ionocytes
of newly hatched larvae (stage IV; Fig. 6A−F). Ionocytes located on
the yolk sac and trunk were larger (∼50 µm diameter, Type I) than
densely clustered ionocytes (∼30 µm, Type II) within the primordial
gill cavity (Fig. 6A, top). Ionocyte density on the yolk sac ranged
between 200 and 300 cells mm−2, while more than 1000 cells mm−2

were counted within the gill cavity (Fig. 6G). NBC1 was also
localized around the apical pit of mucous cells (Fig. 6A,B), which
occur across the entire body surface (see Ottesen and Olafsen,
1997). Immunoreactivity of adhesive mucous droplets (Fig. 6A,
bottom) was probably caused by non-specific binding of antibodies.

DISCUSSION
Embryonic life stages are considered particularly vulnerable to
environmental factors because of a lack of adult-like organ systems
and associated capacity for homeostatic regulation (Hamdoun and
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Epel, 2007; Melzner et al., 2009b). In line with this hypothesis, we
found that Atlantic cod embryos are most vulnerable to the
combined effects of ocean acidification and warming during early
development, especially during gastrulation. The extremely low
capacity for homeostatic regulation (activity and expression of ion
transporters) throughout cleavage and gastrulation suggests that
early embryogenesis is mainly protected by inherited (maternal)
defense mechanisms. By the time of hatching, however, cod larvae
were less sensitive and had ion transport and ATP production
capacities similar to those of specialized adult gill tissue. Moreover,
enhanced enzyme activity and modulation of protein expression
levels in response to acidification and warming imply that post-
gastrulation stages are increasingly capable of responding to
changing environments via plasticity in the development of
homeostatic mechanisms. Based on these results, a conceptual

model of fish early-life vulnerability and homeostatic plasticity is
proposed in Fig. 7.

The combined effects of future ocean acidification and warming
on offspring survival demonstrated in this study are consistent with
previous work on Atlantic cod (Dahlke et al., 2017, 2018), Antarctic
dragon fish Gymnodraco acuticeps (Flynn et al., 2015), sand lance
Ammodytes dubius (Murray et al., 2019) and many other marine
organisms (Przeslawski et al., 2015). Collectively, these data point
to considerable risks for marine species and ecosystems if CO2

emissions continue to rise over the coming decades (Hoegh-
Guldberg et al., 2018). It should be noted, however, that our
approach did not account for the possibility that species could adapt
to the expected long-term changes in acidity and temperature
through selection and/or transgenerational plasticity, i.e. parental
effects (Chevin et al., 2010; Burggren, 2018). Several studies have
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shown that parent–environment interactions, including epigenetic
mechanisms, can alter offspring responses (reaction norms) to
environmental factors (e.g. Dahlke et al., 2016, Shama et al., 2014,
Schunter et al., 2018), potentially enabling physiological adaptation
to moderate climate change (but see Byrne et al., 2019). However,
phylogenetic analyses of past adaptation rates (Quintero and Wiens,
2013; Comte and Olden, 2017) and observed distribution shifts of
marine species to higher latitudes and/or greater depths in response
to global warming (Burrows et al., 2019; Pinsky et al., 2013)
indicate that, for many species, adaptation of physiological
thresholds may be too slow to keep pace with ongoing
anthropogenic climate change (Hoegh-Guldberg et al., 2018). Our
results primarily emphasize the importance of understanding the
development of homeostatic capacity and associated lifecycle
bottlenecks as a basis for reliable climate risk assessment.

Critical periods during development often coincide with
functional transitions (Burggren and Mueller, 2015), such as
those occurring during gastrulation. This early period is
characterized by complex morphogenetic processes, including the
maternal-to-zygotic transition (MZT), where developmental control
is handed over from maternally provisioned factors (e.g. mRNAs,
enzymes and chaperones) to those synthesized from the embryonic
genome (Schier, 2007; Kimmel et al., 1995). Moreover, gastrulation
leads to the formation of germ layers which give rise to different
tissues and organ systems (Kimmel et al., 1995). Any defect at this
stage may cause disproportionately serious damage, leading to
either instantaneous mortality or deformities. In fact, high
vulnerability of gastrula stages to diverse abiotic stressors (e.g.
temperature, CO2, UV radiation, hypoxia or toxicants) was
demonstrated in different gadoid species (Dahlke et al., 2017;
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Kouwenberg et al., 1999; Nahrgang et al., 2017; Skjærven et al.,
2013; Wieland et al., 1994), as well as in model organisms like
zebrafish, Danio rerio (Ali et al., 2011; Jesuthasan and Strähle,
1997; Sawant et al., 2014), fruit fly, Drosophila melanogaster
(Bergh and Arking, 1984), and clawed frog, Xenopus laevis
(Heikkila et al., 1985; Metikala et al., 2018; Degitz et al., 2000).
Overall, these observations identify the gastrulation period as a
critical lifecycle bottleneck for many, if not all, metazoans.
Proposed mechanisms underlying embryo mortality from

external stressors include impairment of functions related to cell
division and cell motility, such as pH-sensitive and energy-
dependent microtubule dynamics (Cheng et al., 2004; Zalik et al.,
1999). It is thus likely that the increasing capacity for pH and energy
homeostasis caused the observed decrease in cod embryo
vulnerability after gastrulation (Fig. 7), although additional
mechanisms may have been involved. For instance, studies on
vertebrate and invertebrate model organisms suggest that inducible
heat shock responses and apoptotic pathways occur after MZT
(Rupik et al., 2011; Hamdoun and Epel, 2007), possibly
contributing to reduced stress sensitivity of post-gastrulation stages.
The capacity of fish embryos and larvae for homeostatic

regulation is thought to be linked to the differentiation of
extrabranchial (epidermal) ionocytes (Burggren and Bautista,
2019; Varsamos et al., 2005). Proportional changes in the
expression and activity of primary (NKA, VHA) and secondary
ion transporters (NBC1, NKCC1), as well as their localization in
mitochondria (ATP-synthase)-rich ionocytes suggest that early
larvae and adults utilize similar ion regulation mechanisms to
defend pH homeostasis against respiratory and environmental
acidosis (Fig. 6H). Notably, the high enzyme activity of cod larvae
(whole-animal extracts, stage V) was similar to that in specialized
adult gill tissue, indicating that these fragile life stages are already
equipped with powerful homeostasis systems. From an evolutionary
perspective, this appears plausible given that fish larvae are among

the fastest growing vertebrates (30% day−1 in cod; Finn et al., 2002)
with correspondingly high requirements for efficient removal of
metabolic CO2 and acid–base regulation (Brauner and Rombough,
2012). In fact, an early study (Ishimatsu et al., 2004) showed that
(short-term) survival of marine fish larvae is possible at PCO2

levels
(>10,000 µatm) 10-fold higher than those projected for the end of
this century.

While all investigated ion transporters are highly expressed by
ionocytes of newly hatched cod larvae (Fig. 6), it was not possible to
determine the contribution of these cells to whole-organism
homeostatic capacity. However, observed changes in whole-
organism enzyme activity and protein expression due to elevated
PCO2

and temperature are consistent with the idea that
developmental (or homeostatic) plasticity allows species to
maintain fitness within a limited range of environmental
conditions (Burggren, 2018). Early mortality of embryos with
insufficient homeostatic capacity (i.e. selection of beneficial
genotypes) provides an alternative explanation for the observed
treatment effects on NKA, VHA and ATP-synthase activity and
expression. However, selection through treatment-related mortality
would have narrowed the data frequency distribution (e.g. at
elevated PCO2

compared with control conditions), which was clearly
not the case (Fig. S2,D).

Higher catalytic power of enzymes (Fig. 5) in combination with
higher kinetic energy at warmer temperatures may support
maintenance of ionic balance despite lower expression (and
energy expenditure) of ion transporters (Fields et al., 2015;
Somero, 1995). This view is supported by an inverse relationship
between incubation temperature and ionocyte density previously
demonstrated in cod larvae (Dahlke et al., 2017). At extreme
temperatures, however, energetic benefits associated with warm
temperature acclimation are increasingly outweighed by rising
maintenance costs and constraints on mitochondrial energy
production (Dahlke et al., 2017; Leo et al., 2018).
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Additional homeostatic requirements of cod embryos at elevated
PCO2

(1100 µatm) may have triggered the establishment of increased
enzyme activity, as was previously demonstrated for gill NKA of
adult cod (Melzner et al., 2009a) and eelpout Zoaces viviparus
(Deigweiher et al., 2008), although at much higher CO2

concentrations (6000 and 10,000 µatm, respectively). Increased
activity of VHA, NKA and ATP-synthase in cod embryos and
larvae incubated at elevated PCO2

implies that pH homeostasis and
normal development under these conditions involves additional
ATP-dependent ion transport in specialized ionocytes (Fig. 6H), but
probably also in other cell types and tissues. Increased ATP demand
by ionocytes under OA conditions may primarily relate to the
activity of NKA, which facilitates electroneutral proton export via
apical Na+/H+ exchanger (NHE) proteins, as well as bicarbonate
buffering via basolateral NBC1 and NKCC1 by establishing and
maintaining the required Na+ and Cl− gradient (Brauner et al., 2019;
Fig. 6H). The observed increase in VHA activity may not be directly
related to proton export by ionocytes, as our results and previous
studies on marine fish do not provide evidence for an apical
orientation of this transporter (Allmon and Esbaugh, 2017;
Brauner et al., 2019). Instead, it is possible that the contribution
of VHA to the maintenance of membrane potentials and various
other cellular functions (e.g. acidification of lysosomes)
(Tresguerres, 2016) led to an increased VHA activity and thus
ATP demand at elevated PCO2

.
In line with previous work on echinoderms (Pan et al., 2015), our

results (e.g. smaller residual enzyme activity; Fig. 3D–G) indicate
that additional costs for acid–base regulation and cellular
maintenance at elevated PCO2

are met through energy reallocation.
In cod and many other fish species, altered energy budgets in

response to elevated PCO2
are reflected by reductions in

developmental growth (Cattano et al., 2018; Esbaugh, 2018;
Dahlke et al., 2018), sometimes still detectable at the juvenile
stage (Murray et al., 2016). Accordingly, our results link CO2-
related enzyme adjustments with developmental trade-offs at the
animal level (growth deficits), which in turn may contribute to
increased susceptibility to natural sources of mortality, i.e.
starvation and predation (Garrido et al., 2015).

Although it is clear that in vitro analyses of enzyme activity and
expression cannot resolve the actual (in vivo) biochemical responses
of an intact organism (Somero et al., 2017), we consider the
presented data as reliable proxies. Firstly, the relative increase in
total ATPase activity (in vitro metabolic capacity) between stage I
and stage V is directly proportional to the increase in oxygen
consumption (in vivo metabolic intensity) determined in cod
embryos (Finn et al., 1995) over the same developmental period
(Fig. S2,E). Secondly, the fractional activity of whole-larvae NKA
(28.5% of TA activity at stage V) corresponds with the relative
amount of available ATP (30%) that is typically allocated to regulate
sodium–potassium fluxes in metabolically active tissues (Somero
et al., 2017), including gill tissue (29–36%) of adult cod (Kreiss
et al., 2015; Michael et al., 2016b).

Conclusion
A low capacity to maintain pH and energy homeostasis of early cod
embryos corresponds with the concept (Fig. 7) that maternally
provisioned defense mechanisms protect initial development
against natural environmental variability (Hamdoun and Epel,
2007). Innate defense levels differ between locally adapted species
or populations, sometimes due to parental pre-exposure (Byrne
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Fig. 5. Temperature effects on the
relationship between enzyme activity
and expression of NKA and
mitochondrial ATP-synthase during
early development of Atlantic cod.
(A,B) Stage-specific ATP-synthase (A)
and NKA (B) activity (μmol ATP h−1

mg−1 protein; left y-axes) of embryos/
larvae reared at 6.0°C (light gray) and
9.5°C (dark gray) was not significantly
different when assayed at a common
temperature (6.0°C, GLMM, P>0.5).
The respective enzyme expression
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embryos/larvae reared at 6.0°C (light
brown) and 9.5°C (dark brown) indicate
lower expression levels at the higher
temperature (GLMM, P<0.05). Means±
s.e.m. (n=12, CO2 treatments were
pooled). (C,D) NKA (C) and ATP-
synthase (D) activity-to-expression
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excluded because of low expression
levels. Asterisks indicate significant
temperature effects at different stages
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the resulting protons (H+) are excreted across the apical membrane via Na+/H+ co-transporter (NHE). Excess bicarbonate (HCO3

−) ions are moved across the
basolateral membrane by NBC1 to restore extracellular pH. Conversely, compensation of alkalosis occurs through apical export of bicarbonate via anion
exchangers and basolateral transport of [H+] by VHA. Salt (NaCl) secretion involves basolateral import of Na+, K+ and Cl− via NKCC1, apical export
of Cl− via cystic fibrosis transmembrane conductance regulator (CFTR), and paracellular exit of Na+ between accessory cells (AC) according to the
electrochemical gradient maintained by basolateral NKA. In contrast to ATP-synthase, NKA, VHA, NBC1 and NKCC1 expression (gray), expression of
CA, NHA, AE and CFTR (white) was not confirmed in this study. Red arrows indicate ATP-dependent ion transport processes.
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et al., 2019). Future climate changes may exceed the range of natural
variability and thus innate defense levels. The establishment of
improved tolerance after the critical gastrulation period most likely
involves increasing capacity for homeostatic regulation associated
with the differentiation of specialized cells (ionocytes) and organ
systems (Varsamos et al., 2005). Regulatory mechanisms of early
cod larvae are more sophisticated than previously expected,
possibly reflecting a physiological prerequisite for highly active
and rapidly growing fish larvae (Rombough, 2011). Capacity
adjustments and modifications of regulatory mechanisms
potentially support short-term (within-generation) acclimatization
to environmental change, but the extent of homeostatic plasticity
may cause additional energetic costs and trade-offs.
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